精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于⊙O,AB是⊙O的直径,C是
AD
的中点,弦CE⊥AB于点H,连结AD,分别交CE、BC于点P、Q,连结BD
(1)求证:∠ACH=∠CBD;
(2)求证:P是线段AQ的中点;
(3)若⊙O 的半径为5,BH=8,求CE的长.
分析:(1)根据垂径定理得出AB垂直平分CE,推出H为CE中点,弧AC=弧AE,根据圆周角定理推出即可.
(2)根据圆周角定理求出∠ACH=∠CAD,推出AP=CP,求出∠PCQ=∠CQP,推出PC=PQ,即可得出答案.
(3)连接OC,根据勾股定理求出CH,根据垂径定理求出即可.
解答:(1)证明:∵AB是⊙O的直径,CE⊥AB,
∴AB垂直平分CE,
即H为CE中点,弧AC=弧AE
又∵C是
AD
的中点,
∴弧AC=弧CD
∴弧AC=弧CD=弧AE
∴∠ACH=∠CBD;

(2)由(1)知,∠ACH=∠CBD,
又∵∠CAD=∠CBD
∴∠ACH=∠CAD,
∴AP=CP
又∵AB是⊙O的直径,
∴∠ACB=∠ADB=90°,
∴∠PCQ=90°-∠ACH,∠PQC=∠BQD=90°-∠CBD,
∴∠PCQ=∠PQC,
∴PC=PQ,
∴AP=PQ,
即P是线段AQ的中点;

(3)解:连接OC,
∵BH=8,OB=OC=5,
∴OH=3
∴由勾股定理得:CH=
52-32
=4
由(1)知:CH=EH=4,
∴CE=8.
点评:本题考查了勾股定理,垂径定理,圆周角定理,等腰三角形的性质和判定的应用,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案