精英家教网 > 初中数学 > 题目详情

【题目】某数学兴趣小组同学进行测量大树CD高度的综合实践活动如图在点A处测得直立于地面的大树顶端C的仰角为45°,然后沿在同一剖面的斜坡AB行走13米至坡顶B然后再沿水平方向行走4米至大树脚底点D斜面AB的坡度(或坡比i=1:2.4,那么大树CD的高度为_____

【答案】11

【解析】

可以作BFAEF,在RtABF中,运用勾股定理,根据各边的数量关系求得AF的长度,就可得到AE的长度;

接下来根据已知的AE的长度,在RtACE中,运用三角函数求得CE的长度,进而可知CD的长度.

解:作BFAEF,如图所示:

FE=BD=4米,DE=BF.

∵斜面AB的坡度i=1:2.4

AF=2.4BF.

BF=x米,则AF=2.4x米,

RtABF中,由勾股定理得:x2+(2.4x)2=132

解得:x=5

DE=BF=5米,AF=12米,

AE=AF+FE=16.

RtACE中,CE=AE=16米,

CD=CE-DE=16-5=11.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC

其中正确的是(   )

A. ①②③④ B. ②③ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一名大学生利用互联网+”自主创业,销售一种产品,这种产品的成本价为24/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于32元件,市场调查发现,该产品每天的销售最(件)与(元/件)之间的函数关系如图所示

1)求之间的函数关系式,并写出自变量的取值范围;

2)求每天的销售利润(元)与销售单价(元/件)之问的函数关系式并求出每天销售价为多少元时,每天的销售利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点AC分别在x轴、y轴上,反比例函数的图象与正方形的两边ABBC分别交于点MNNDx轴,垂足为D,连接OMONMN

下列结论:

①△OCN≌△OAM

ON=MN

③四边形DAMNMON面积相等;

④若∠MON=45°MN=2,则点C的坐标为

其中正确的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按ABCD四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:

说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下

1)样本中D级的学生人数占全班学生人数的百分比是

2)扇形统计图中A级所在的扇形的圆心角度数是

3)请把条形统计图补充完整;

4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并完成相应的任务.

古希腊的几何学家海伦在他的著作《度量论》一书中给出了利用三角形三边之长求面积的公式﹣﹣﹣﹣海伦公式S(其中abc是三角形的三边长,S为三角形的面积),并给出了证明

例如:在△ABC中,a3b4c5,那么它的面积可以这样计算:

a3b4c5

6

S6

事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.

根据上述材料,解答下列问题:

如图,在△ABC中,BC7AC8AB9

1)用海伦公式求△ABC的面积;

2)如图,ADBE为△ABC的两条角平分线,它们的交点为I,求△ABI的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数yax23ax+c的图象与x轴交于点AB,与y轴交于点c直线y=﹣x+4经过点BC

1)求抛物线的表达式;

2)过点A的直线ykx+k交抛物线于点M,交直线BC于点N,连接AC,当直线ykx+k平分ABC的面积,求点M的坐标;

3)如图2,把抛物线位于x轴上方的图象沿x轴翻折,当直线ykx+k与翻折后的整个图象只有三个交点时,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆的直径,点D在半圆弧上,过点DAB的平行线与过点A半圆的切线交于点C,点EAB上,若DE垂直平分BC,则______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)

查看答案和解析>>

同步练习册答案