精英家教网 > 初中数学 > 题目详情
8.已知下列命题:①内错角相等;②无限小数是无理数;③从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;④平行于同一条直线的两条直线平行;⑤两条平行线被第三条直线所截,同旁内角的角平分线互相垂直.其中真命题的个数为(  )
A.3个B.2个C.1个D.0个

分析 根据平行线的性质与判定、无理数的定义、距离的定义对各个命题分别进行判断,即可得出结论.

解答 解::①内错角相等;假命题;
②无限小数是无理数;假命题;
③从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;假命题;
④平行于同一条直线的两条直线平行;真命题;
⑤两条平行线被第三条直线所截,同旁内角的角平分线互相垂直;真命题;
故选:B.

点评 本题考查了命题与定理的知识,对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.计算 $|{-\sqrt{9}}|-\sqrt{{{(-6)}^2}}-\root{3}{27}+\root{3}{-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则$\widehat{BC}$的长度为(  )
A.$\frac{2}{3}$πB.$\frac{1}{3}$πC.$\frac{4}{3}$πD.$\frac{4}{9}$π

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,点M是正方形ABCD的边CD的中点,正方形ABCD的边长为4cm,点P按A→B→C→M的顺序在正方形的边上以每秒2cm的速度作匀速运动,设点P的运动时间为x(秒),△APM的面积为y(cm2
(1)直接写出点P运动1秒时,△AMP面积; 
(2)在点P运动2秒后至4秒这段时间内,y与x的函数关系式;
(3)在点P整个运动过程中,当x为何值时,y=3?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.直线y=2x+b与x轴、y轴围成的三角形面积为4,则b=±4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在平面直角坐标系xoy中,对于点P(x,y)和Q(x,y'),给出如下定义:如果y'=$\left\{\begin{array}{l}{y(x≥0)}\\{-y(x<0)}\end{array}\right.$,那么称点Q为点P的“并联点”.例如:点(5,6)的“并联点”为点(5,6),点(-5,6)的“并联点”为点(-5,-6).
(1)点(2,1)的“并联点”为(2,1),点(-$\frac{1}{2}$,$\sqrt{3}$)的“并联点”为(-$\frac{1}{2}$,-$\sqrt{3}$)
(2)如果点N*(m+1,2)是一次函数y=x+3图象上点N的“并联点”,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在一次户外拓展训练中,小明攀到一个高为10米的高地A处(如图)看到悬崖顶部O的仰角为30°,利用挂在悬崖顶部的绳索,划过90°到达高为3米的平台B处,求绳索OA的长度和小明在荡绳索的过程中离地面的最低点的高度MN.(小明的身高忽略不计,结果精确到0.01米,参考数据:$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在△ABC中,点D、E在BC上,AB=AC,AD=AE,△ADE绕着点A旋转,当点E转到变AC上时,点D恰好还在边BC上,则∠B与∠DAE等量关系是(  )
A.∠B=∠DAEB.∠B+∠DAE=60°C.∠B+∠DAE=90°D.2∠B+3∠DAE=180°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.阅读理解下面内容,并解决问题:
善于思考的小明在学习《实数》一章后,自己探究出了下面的两个结论:
①${(\sqrt{9×4})^2}=9×4$,${(\sqrt{9}×\sqrt{4})^2}={(\sqrt{9})^2}×{(\sqrt{4})^2}=9×4$,$\sqrt{9×4}$和$\sqrt{9}×\sqrt{4}$都是9×4的算术平方根,
而9×4的算术平方根只有一个,所以$\sqrt{9×4}$=$\sqrt{9}×\sqrt{4}$.
②${(\sqrt{9×16})^2}=9×16$,${(\sqrt{9}×\sqrt{16})^2}={(\sqrt{9})^2}×{(\sqrt{16})^2}=9×16$,$\sqrt{9×16}$和$\sqrt{9}×\sqrt{16}$都是9×16的算术平方根,
而9×16的算术平方根只有一个,所以$\sqrt{9×16}$=$\sqrt{9}$×$\sqrt{16}$.
请解决以下问题:
(1)请仿照①帮助小明完成②的填空,并猜想:一般地,当a≥0,b≥0时,$\sqrt{ab}$与$\sqrt{a}$、$\sqrt{b}$之间的大小关系是怎样的?
(2)再举一个例子,检验你猜想的结果是否正确.
(3)运用以上结论,计算:$\sqrt{81×144}$的值.

查看答案和解析>>

同步练习册答案