【题目】如图,点 A,C 是数轴上的点,点 A 在原点上,AC=10.动点 P,Q 网时分别从 A,C 出发沿数轴正方向运动,速度分别为每秒 3 个单位长度和每秒 1 个单位长度,点 M 是 AP 的中点,点 N 是 CQ 的中点.设运动时间为t秒(t>0)
(1) 点C表示的数是______ ;点P表示的数是______,点Q表示的数是________(点P.点 Q 表示的数用含 t 的式子表示)
(2) 求 MN 的长;
(3) 求 t 为何值时,点P与点Q相距7个单位长度?
科目:初中数学 来源: 题型:
【题目】阅读下列材料
下面是小明同学“作一个角等于的直角三角形”的尺规作图过程.
已知:线段(如图1)
求作:,使,,
作法:如图2,
(1)分别以点,点为圆心,长为半径画弧,两弧交于点,连接
(2)连接并延长,使得;
(3)连接
就是所求的直角三角形
证明:连接.
由作图可知,,
∴是等边三角形(等边三角形定义)
∴(等边三角形每个内角都等于)
∴
∴(等边对等角)
在中,(三角形的内角和等于)
∴
∴(三角形的内角和等于),即,
∴就是所求作的直角三角形
请你参考小明同学解决问题的方式,利用图3再设计一种“作一个角等于的直角三角形”的尺规作图过程(保留作图痕迹),并写出作法,证明,及推理依据.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.
月份n(月) | 1 | 2 |
成本y(万元/件) | 11 | 12 |
需求量x(件/月) | 120 | 100 |
(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;
(2)求k,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学对全校学生进行文明礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:
(1)请将以上两幅统计图补充完整;
(2)在扇形统计图中,表示“不合格”的扇形的圆心角度数为_________;
(3)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有________人达标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,AB =DE,BE∥AC.
(1)求证:△ABC≌△DEB;
(2)连结AD、AE、CE,如图2.
①求证:CE是∠ACB的角平分线;
②请判断△ABE是什么特殊形状的三角形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为( )
A.8
B.10
C.12
D.14
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线CD经过的顶点C,CA=CB.E、F分别是直线CD上两点,且.
(1)若直线CD经过的内部,且E、F在射线CD上,请解决下面两个问题:
①如图1,若,则 (填“”,“”或“”号);
②如图2,若,若使①中的结论仍然成立,则与应满足的关系是 ;
(2)如图3,若直线CD经过的外部,,请探究EF、与BE、AF三条线段的数量关系,并给予证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com