精英家教网 > 初中数学 > 题目详情
16.如图,MN是圆柱底面的直径,MP是圆柱的高,在圆柱的侧面上,过点M,P有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿MP剪开,所得的侧面展开图可以是(  )
A.B.C.D.

分析 根据两点之间线段最短,剪开后所得的侧面展开图中的金属丝是线段,即可选择.

解答 解:根据两点之间线段最短,剪开后所得的侧面展开图中的金属丝是线段,且从P点开始到M点为止,
故选:D.

点评 本题着重考查学生对立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,由几何图形想象出实物的形状”的要求相一致,充分体现了实践操作性原则.要注意空间想象哦,哪一个平面展开图对面图案都相同.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.如图,已知∠1=∠2,有下列结论:①∠3=∠D;②AB∥CD;③AD∥BC;④∠A+∠D=180°,其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,连接AD.若△ABC的周长是17cm,AE=2cm,则△ABD的周长是(  )
A.13cmB.15cmC.17cmD.19cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,AB为⊙O的直径,点C为AB延长线上一点,动点P从点A出发沿AC方向以lcm/s的速度运动,同时动点Q从点C出发以相同的速度沿CA方向运动,当两点相遇时停止运动,过点P作AB的垂线,分别交⊙O于点M和点N,已知⊙O的半径为l,设运动时间为t秒.
(1)若AC=5,则当t=$\frac{5}{3}$时,四边形AMQN为菱形;当t=$\frac{5-\sqrt{5}}{2}$时,NQ与⊙O相切;
(2)当AC的长为多少时,存在t的值,使四边形AMQN为正方形?请说明理由,并求出此时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.一包装礼盒是底面为正方形的无盖立体图形,其展开图如所示:是由一个正方形与四个正六边形组成,已知正六边形的边长为a,甲、乙两人分别用长方形和圆形硬板纸裁剪包装纸盒.
(1)问甲、乙两人谁的硬板纸利用率高,请通过计算长方形和圆的面积说明原因.
(2)你能设计出利用率更高的长方形硬板纸吗?请在展开图外围画出长方形硬板纸形状.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中,抛物线y=-$\frac{1}{4}$(x-m)2+$\frac{1}{4}$m2-m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.
(1)当m=2时,则点B的坐标为(0,-2);
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?
②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以:A、B、D、P为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源:2017届福建省仙游县郊尾、枫亭五校教研小片区九年级下学期第一次月考数学试卷(解析版) 题型:判断题

已知二次函数y=x2-2x-3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.

(1)求点A、B、C、D的坐标.

(2)说出抛物线y=x2-2x-3可由抛物线y=x2如何平移得到?

(3)求四边形OCDB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.小明与小红分别住在东西大街相距10(1+$\sqrt{3}$)km的点A与点B处.在小明家北偏东45°与小红家北偏西30°的方向有两条公路交于点C,在点C的南偏西15°的方向上,且在点A与点B之间有一个以点D为圆心的方圆5km的大型批发市场.
(1)分别求A和C、A和D之间的距离;
(2)判断公路BC是否穿过批发市场.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.小王骑车从甲地到乙地,小李骑车从乙地到甲地,两人同时出发,沿同一条公路匀速前进,在出发2h时,两人相距36km,在出发3h时,两人相遇.设骑行的时间为x(h),两人之间的距离为y(km),图中的线段AB表示两人从出发到相遇这个过程中,y与x之间的函数关系.
(1)求线段AB所表示的y与x之间的函数表达式;
(2)求甲、乙两地之间的距离.

查看答案和解析>>

同步练习册答案