精英家教网 > 初中数学 > 题目详情
20.某处欲建一观景平台,如图所示,原设计平台的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°,则调整后楼梯AD的长为6$\sqrt{2}$m.(结果保留根号)

分析 根据题意可以先求出AC的长,然后根据∠ADC=30°,∠ACD=90°,可以求得AD的长,本题得以解决.

解答 解:由题意可得,
AB=6m,∠ABC=45°,∠ACB=90°,
∴AC=AB•sin∠ABC=$6×\frac{\sqrt{2}}{2}=3\sqrt{2}$m,
又∵∠ADC=30°,∠ACD=90°,
∴AD=2AC=6$\sqrt{2}$m.
故答案为:6$\sqrt{2}$m.

点评 本题考查解直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.如图所示的圆柱体中底面圆的半径是$\frac{4}{π}$,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是4$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知a+b=2,ab=-1,求下面代数式的值:
(1)6a2+6b2; 
(2)(a-b)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.方程组:$\left\{\begin{array}{l}{3(x+y)-4(x-y)=-9}\\{\frac{x+y}{2}+\frac{x-y}{6}=1}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,在条件:①∠5=∠6,②∠7=∠2,③∠3+∠8=180°,④∠3=∠2,⑤∠4+∠1=180°中,能判定a∥b的条件有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.下列代数式中:$-m,{a^2}+a,-x-3,\frac{b}{a},\frac{a+b}{2},-2\frac{1}{2},\sqrt{2}x,\root{3}{a}$.
属于单项式的有:$-m,-2\frac{1}{2},\sqrt{2}x,\root{3}{a}$;
属于多项式的有:${a^2}+a,-x-3,\frac{a+b}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,点C将线段AB分成两部分,如果$\frac{AC}{AB}$=$\frac{BC}{AC}$,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为s的图形分成两部分,这两部分的面积分别为S1,S2,如果$\frac{{s}_{1}}{s}$=$\frac{{s}_{2}}{{s}_{1}}$,那么称直线l为该图形的黄金分割线.

(1)研究小组猜想:在三角形ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是三角形ABC 的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形ABC的黄金分割线?
(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D(D为AB边上的黄金分割点)作直线DF,且DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是三角形ABC的黄金分割线.
请你说明理由.
(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF平行AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.在四边形的4个内角中,钝角的个数最多为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.方程2xn-3-y3m+n-2+3=0是二元一次方程,则3m-n=-5.

查看答案和解析>>

同步练习册答案