精英家教网 > 初中数学 > 题目详情
抛物线的对称轴是(      )
A.B.C.D.
A.

试题分析:已知解析式为顶点式,可直接根据顶点式的坐标特点,所以顶点坐标(2,-1),从而得出对称轴
故选A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

下列关于抛物线y=x2+2x+1的说法中,正确的是(     )
A.开口向下B.对称轴为直线x=1
C.与x轴有两个交点 D.顶点坐标为(-1,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线(b,c是常数,且c<0)与轴分别交于点A、B(点A位于点B的左侧),与轴的负半轴交于点C,点A的坐标为(-1,0).

(1)请直接写出点OA的长度;
(2)若常数b,c满足关系式:.求抛物线的解析式.
(3)在(2)的条件下,点P是轴下方抛物线上的动点,连接PB、PC.设△PBC的面积为S.
①求S的取值范围;
②若△PBC的面积S为整数,则这样的△PBC共有多少个(直接写出结果)?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线经过点A(4,0),B(2,2),连结OB,AB.

(1)求的值;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按顺时针方向旋转l35°得到△OA′B′,写出A′B′的中点P的出标.试判断点P是否在此抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线过x轴上两点A(9,0),C(-3,0),且与y轴交于点B(0,-12).

(1)求抛物线的解析式;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,△APQ∽△AOB?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBNA面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线(m是常数,)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.
(1)此抛物线的解析式;
(2)求点A、B、C的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数y=x2-6x+c的图象过A(-1,y1)、B(2,y2)、C(3+,y3)三点,则y1、y2、y3的大小关系正确的是(    )
A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数 (a≠0)中的自变量x与函数值y的部分对应值如下表:
x


-1

0

1


y


-2

-2

0


的解为    

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,抛物线的对称轴是直线x=1,且经过点P,则的值为(  )
A.2B.1C.0D.

查看答案和解析>>

同步练习册答案