精英家教网 > 初中数学 > 题目详情
如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为( )平方单位.

A.(π-1)R2
B.R2
C.(π+1)R2
D.πR2
【答案】分析:从图中可以看出新月形ACED的面积是圆O半圆的面积-弓形CED的面积,弓形CED的面积又=扇形BCD面积-三角形BCD的面积,然后依面积公式计算即可.
解答:解:新月形ACED的面积==R2
故选B.
点评:本题的关键是看出:新月形ACED的面积是圆O半圆的面积-弓形CED的面积,然后逐一求面积即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为(  )
A、
1
4
B、
1
5
C、
3
8
D、
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•盘锦)如图,AB,CD是⊙O的直径,点E在AB延长线上,FE⊥AB,BE=EF=2,FE的延长线交CD延长线于点G,DG=GE=3,连接FD.
(1)求⊙O的半径;
(2)求证:DF是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB,CD是⊙O的两条弦,且AB=CD,点M是
AC
的中点,求证:MB=MD.

查看答案和解析>>

同步练习册答案