精英家教网 > 初中数学 > 题目详情
9.把下面的证明过程补充完整.
已知:如图:△ABC'中,AD⊥BC于点D,EF⊥BC于点F,EF交AB于点G,交CA的延长线于点E,AD平分∠BAC.
求证:∠1=∠2
证明:∵AD⊥BC于点D,FF⊥BC于点F(己知)
∴∠ADC=90°,∠EFC=90°(垂直定义)
∴∠ADC=∠EFC(等量代换)
∴AD∥EF(同位角相等,两直线平行)
∴∠1=∠BAD(两直线平行,同位角相等)
∠2=∠CAD(两直线平行,同位角相等)
∵AD平分∠BAC(己知)
∴∠BAD=∠CAD(角平分线定义)
∴∠1=∠2(等量代换)

分析 求出∠ADC=∠EFC,根据平行线的判定得出AD∥EF,根据平行线的性质得出∠1=∠BAD,∠2=∠CAD,根据角平分线定义得出∠BAD=∠CAD,即可得出答案.

解答 证明::∵AD⊥BC于点D,FF⊥BC于点F(己知),
∴∠ADC=90°,∠EFC=90°(垂直定义),
∴∠ADC=∠EFC(等量代换),
∴AD∥EF(同位角相等,两直线平行),
∴∠1=∠BAD(两直线平行,同位角相等),
∠2=∠CAD(两直线平行,同位角相等),
∵AD平分∠BAC(己知),
∴∠BAD=∠CAD(角平分线定义),
∴∠1=∠2(等量代换),
故答案为:同位角相等,两直线平行,两直线平行,同位角相等,∠CAD,角平分线定义,等量代换.

点评 本题考查了平行线的性质和判定,角平分线定义,垂直定义的应用,能灵活运用定理进行推理是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.如图所示的物体的左视图(从左面看得到的视图)是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.先化简,再求值:(a+1)2-(a+1)(a-1),其中,a=$\sqrt{2}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.一个几何体由一些大小相同的小正方体组成,如图是它的主视图、左视图和俯视图,那么组成该几何体所需小正方体的个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在?ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连接BE,DF
(1)求证:△DOE≌△BOF
(2)当∠DOE等于多少度时,四边形BFFD为菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时
针旋转,使AB与AC重合,点D旋转至点E,过E点作EH⊥CD于H,则EH的长为$\frac{15\sqrt{7}}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.汽车油箱中有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶的路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.则y与x的函数关系式为y=50-0.1x,自变量x的取值范围是0≤x≤500,汽车行驶200km时,油箱中所剩的汽油为30L.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图1,在平面之间坐标系xoy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2-x1|2+|y2-y1|2,所以A,B两点间的距离为AB=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$.   我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x-0|2+|y-0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2
问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为(x-a)2+(y-b)2=r2
 综合应用:
 如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=$\frac{3}{4}$,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.
    ①证明AB是⊙P的切点;
    ②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边上的中点,点M是AB上的一动点(不与点A重合),延长ME交射线CD于点N,连结MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM=1 时,四边形AMDN是矩形;②当AM=2 时,四边形AMDN是菱形.

查看答案和解析>>

同步练习册答案