分析 求出∠ADC=∠EFC,根据平行线的判定得出AD∥EF,根据平行线的性质得出∠1=∠BAD,∠2=∠CAD,根据角平分线定义得出∠BAD=∠CAD,即可得出答案.
解答 证明::∵AD⊥BC于点D,FF⊥BC于点F(己知),
∴∠ADC=90°,∠EFC=90°(垂直定义),
∴∠ADC=∠EFC(等量代换),
∴AD∥EF(同位角相等,两直线平行),
∴∠1=∠BAD(两直线平行,同位角相等),
∠2=∠CAD(两直线平行,同位角相等),
∵AD平分∠BAC(己知),
∴∠BAD=∠CAD(角平分线定义),
∴∠1=∠2(等量代换),
故答案为:同位角相等,两直线平行,两直线平行,同位角相等,∠CAD,角平分线定义,等量代换.
点评 本题考查了平行线的性质和判定,角平分线定义,垂直定义的应用,能灵活运用定理进行推理是解此题的关键.
科目:初中数学 来源: 题型:选择题
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com