精英家教网 > 初中数学 > 题目详情

【题目】山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.

(1)今年A型车每辆售价多少元?(用列方程的方法解答)

(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?

AB两种型号车的进货和销售价格如下表:

A型车

B型车

进货价格(元)

1100

1400

销售价格(元)

今年的销售价格

2000

【答案】1)今年A型车每辆售价1600元;(2)当新进A型车20辆,B型车40辆时,这批车获利最大.

【解析】试题分析:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;

2)设今年新进A型车a辆,则B型车(60-a)辆,获利y元,由条件表示出ya之间的关系式,由a的取值范围就可以求出y的最大值.

试题解析:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得

解得:x=1600

经检验,x=1600是原方程的根.

答:今年A型车每辆售价1600元;

2)设今年新进A型车a辆,则B型车(60-a)辆,获利y元,由题意,得

y=1600-1100a+2000-1400)(60-a),

y=-100a+36000

∵B型车的进货数量不超过A型车数量的两倍,

∴60-a≤2a

∴a≥20

∵y=-100a+36000

∴k=-1000

∴ya的增大而减小.

∴a=20时,y最大=34000元.

∴B型车的数量为:60-20=40辆.

当新进A型车20辆,B型车40辆时,这批车获利最大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠ADC=∠ABC90°ADCDDPABP.若四边形ABCD的面积是18,则DP的长是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点ECD的中点,点FBC边上的一点,且EFAE.求证:AE平分∠DAF.

小林同学读题后有一个想法,延长FE,AD交于点M,要证AE平分∠DAF,只需证AMF是等腰三角形即可.请你参考小林的想法,完成此题的证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们规定:在正方形ABCD中,以正方形的一个顶点A为顶点,且过对角顶点C的抛物线,称为这个正方形的以A为顶点的对角抛物线.
(1)在平面直角坐标系xOy中,点在轴正半轴上,点C在y轴正半轴上.
①如图1,正方形OABC的边长为2,求以O为顶点的对角抛物线;
②如图2,在平面直角坐标系xOy中,正方形OABC的边长为a,其以O为顶点的对角抛物线的解析式为y= x2 , 求a的值;

(2)如图3,正方形ABCD的边长为4,且点A的坐标为(3,2),正方形的四条对角抛物线在正方形ABCD内分别交于点M、P、N、Q,直接写出四边形MPNQ的形状和四边形MPNQ的对角线的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知函数的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P (a,0)(其中a>2),过点P作x轴的垂线,分别交函数和y=x的图象于点C,D.

(1)求点A的坐标;

(2)若OB=CD,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:△ABC是⊙O的内接三角形,∠ACB=45°,∠AOC=150°,过点C作⊙O的切线交AB的延长线于点D.

(1)求证:CD=CB;
(2)如果⊙O的半径为 ,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.

(1)求证:PA是⊙O的切线;
(2)若AB=4+ ,BC=2 ,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点ABCD在同一条直线上,点EF分别在直线AD的两侧,且AE=DF∠A=∠DAB=DC

1)求证:四边形BFCE是平行四边形;

2)若AD=10DC=3∠EBD=60°,则BE= 时,四边形BFCE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索规律:观察下面由组成的图案和算式,解答问题:

(1)请猜想1+3+5+7+9+…+19=_______________________;

(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1) =___________;

(3)用上述规律计算:51+53+55+…+2011+2013.

查看答案和解析>>

同步练习册答案