解:(1)∵AB=AC,∠A=36°,
∴∠ABC=
=
=72°;
(2)①如图(2),△ADB、△BCD是等腰三角形.
说明△ADB是等腰三角形,理由:
由(1)得:∠ABC=72°,
又∵BD是∠ABC的平分线,
∴∠ABD=
∠ABC=36°,
又∵∠A=36°,
∴∠A=∠ABD,
∴AD=BD,即△ADB是等腰三角形.
[若说明△BCD是等腰三角形,理由:
∵∠A=36°,AB=AC,
∴∠C=∠ABC=
(180°-36°)=72°
又∵BD是∠ABC的平分线,
∴∠DBC=
∠ABC=36°,
∴∠BDC=180°-∠C-∠DBC=180°-72°-36°=72°,
∴∠C=∠BDC,
∴BD=BC,即△BCD是等腰三角形.
②存在3个点P,使得△CDP是等腰三角形.
等腰△CDP,当以∠CDP为顶角,CD为一腰时,∠CPD=72°;
当以∠DCP为顶角,CD为一腰时,存在两点P:
一点在线段BC延长线上,此时∠CPD=36°;
一点在线段BC上,此时∠CPD=54°.
分析:(1)由已知条件结合等腰三角形的性质及三角形内角和进行求解;
(2)①等腰三角形的判定,BD是△ABC中∠ABC的平分线.可求出各个角的大小再进行判断;
②使△CDP为等腰三角形,则可能是CD=CP,DP=CD,因为∠C=∠BDC,所以不可能PC=PD.
点评:本题考查了等腰三角形的性质和判定、角的平分线的性质及三角形内角和定理;由已知条件利用相关的性质求得各个角的度数是正确解答本题的关键.