分析 因为方程有两个相等的实数根,所以根的判别式△=b2-4ac=0,又a+b+c=0,即b=-a-c,代入b2-4ac=0得(-a-c)2-4ac=0,化简即可得到a与c的关系.
解答 解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,
∴△=b2-4ac=0,
又a+b+c=0,即b=-a-c,
代入b2-4ac=0得(-a-c)2-4ac=0,
即(a+c)2-4ac=a2+2ac+c2-4ac=a2-2ac+c2=(a-c)2=0,
∴a=c.
点评 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -20 | B. | 20 | C. | -60 | D. | 60 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com