精英家教网 > 初中数学 > 题目详情
如图,直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,已知EF:DF=5:8,AC=24.
(1)求AB的长;
当AD=4,BE=1时,求CF的长.
(1)9  (2)4

试题分析:(1)根据l1∥l2∥l3,推出==,代入求出BC即可求出AB;
(2)根据l1∥l2∥l3,得出==,求出OB、OC,根据平行线分线段成比例定理得出==,代入求出即可.
(1)解:∵l1∥l2∥l3,EF:DF=5:8,AC=24,
==
=
∴BC=15,
∴AB=AC﹣BC=24﹣15=9.
(2)解:∵l1∥l2∥l3

==
=
∴OB=3,
∴OC=BC﹣OB=15﹣3=12,
==
=
∴CF=4.
点评:本题考查了平行线分线段成比例定理的应用,能熟练地运用定理进行计算是解此题的关键,题目比较典型,难度适中,注意:对应成比例.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

在平行四边形ABCD中,AC=4,BD=6,P是BD上的.任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F.如图,设BP=x,EF=y,则能反映y与x之间关系的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)已知a、b、c、d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长.
(2)已知线段a、b、c,a=4cm,b=9cm,线段c是线段 a和b的比例中项.求线段c的长.
(3)已知y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4,x=2时,y=5.
求:①y与x之间的函数关系式;②当x=4时,求y的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为 _________ 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

两个相似多边形面积之比为4:9,周长只差为4.则这两个相似多边形的周长分别是  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,若A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,为使ABC∽△PQR,则点R应是甲、乙、丙、丁四点中的(  )

A.甲                    B.乙                    C.丙                    D.丁

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥BC交AB于点E,DE=4,BC=6,AD=5.求DC与AE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图10,AB和DE是直立在地面上的两根立柱,AB="5" m,某一时刻,AB在阳光下的投影BC="4" m.
(1)请你在图中画出此时DE在阳光下的投影,并简述画图步骤;
(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6 m,请你计算DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是(      )cm2

A.        B.       C.      D.

查看答案和解析>>

同步练习册答案