精英家教网 > 初中数学 > 题目详情
7.如图,直线y1=kx+2与反比例函数y2=$\frac{3}{x}$的图象交于点A(m,3),与坐标轴分别交于B,C两点.
(1)若y1>y2>0,求自变量x的取值范围;
(2)动点P(n,0)在x轴上运动,当n为何值时,|PA-PC|的值最大?并求最大值.

分析 (1)由点A的纵坐标利用反比例函数图象上点的坐标特征即可求出点A的坐标,再根据两函数图象的上下位置关系,即可得出当y1>y2>0时,自变量x的取值范围;
(2)由点A的坐标利用待定系数法即可求出直线AB的函数解析式,利用一次函数图象上点的坐标特征可求出点B、C的坐标,再根据三角形的三边关系即可确定当点P与点B重合时,|PA-PC|的值最大,利用两点间的距离公式即可求出此最大值.

解答 解:(1)当y2=$\frac{3}{x}$=3时,x=1,
∴点A的坐标为(1,3).
观察函数图象,可知:当x>1时,直线在双曲线上方,
∴若y1>y2>0,自变量x的取值范围为x>1.

(2)将A(1,3)代入y1=kx+2中,
3=k+2,解得:k=1,
∴直线AB的解析式为y1=x+2.
当x=0时,y1=x+2=2,
∴点C的坐标为(0,2),
∴AC=$\sqrt{(0-1)^{2}+(2-3)^{2}}$=$\sqrt{2}$.
当y1=x+2=0时,x=-2,
∴点B的坐标为(-2,0).
当点P于点B重合时,|PA-PC|的值最大,此时n=-2,|PA-PC|=AC=$\sqrt{2}$.
∴当n为-2时,|PA-PC|的值最大,最大值为$\sqrt{2}$.

点评 本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的三边关系,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点A的坐标;(2)利用三角形的三边关系确定点P的位置.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图所示,?ABCD的顶点A、D在反比例函数$y=\frac{k}{x}$(k<0,x<0)的图象上,顶点B、C分别在坐标轴上.
(1)求证:∠BAD=2∠OBC;
(2)若B(0,1),C($\frac{\sqrt{5}}{5}$-1,0),AB=$\sqrt{5}$AD,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某校九年级社会实践小组去商店调查商品销售情况,了解到该商店以每条80元的价格购进了某品牌牛仔裤50条,并以每条120元的价格销售了40条.商店准备采取促销措施,将剩下的牛仔裤降价销售.请你帮商店计算一下,每条牛仔裤降价多少元时,销售完这批牛仔裤正好达到盈利45%的预期目标?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,一次函数y=x+b(b>0)与反比例函数y=$\frac{k}{x}$(k≠0)的图象有一个公共点A,直线l⊥x轴于点N(a,0),且与一次函数和反比例函数的图象分别交于点B,C.
(1)当点A的坐标为(1,2)时,
①求一次函数与反比例函数的解析式;
②若四边形ODBC是平行四边形,求a的值;
(2)是否存在四边形ODBC是菱形的情况?如果存在,求出k与b之间的关系式;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,某社会实践活动小组地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸
点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向
(Ⅰ)求∠CBA的度数
(Ⅱ)求出这段河的宽(结果精确到1m,备用数据$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①抛物线的对称轴为x=-1;②abc=0;③方程ax2+bx+c+1=0有两个不相等的实数根;④无论x取何值,ax2+bx≤a-b.其中,正确的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.平面直角坐标系中,点C是抛物线y=-$\frac{1}{2}{x}^{2}$+b的顶点,抛物线交x轴负半轴于点Q,直线y=-2x+2分别交x轴、y轴于点B、A,交抛物线于点M、N(点M在点N的左侧).
(1)求点N和M的坐标;(用b表示);
(2)若S△QAN=3S△QAM,求b的值
(3)如图,b>2,直线NQ交y轴于点P,当PC=PN时,求b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,反比例函数y=$\frac{k}{x}$的图象与直线y=x+m在第一象限交于点P(6,2),点A为反比例函数图象上的一点,作AB∥y轴,交直线y=x+m于点B,连结OA,OB.
(1)k=12;
(2)若△AOB的面积大于14,则点A的横坐标x的取值范围是x<2-2$\sqrt{11}$或x>2+2$\sqrt{11}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.小明每天早上要在7:30之前赶到距家1000米的学校上学.小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书.于是,爸爸立即以110米/分的速度去追小明,而同时,小明也想起自己的语文书掉在家里了,他马上以90米/分的速度回头取书.
(1)问爸爸出门几分钟后两人在途中相遇?
(2)追上小明时,距离学校还有多远?

查看答案和解析>>

同步练习册答案