17£®ÔĶÁÏÂÃæ²ÄÁϲ¢½â¾öÓйØÎÊÌ⣺
ÎÒÃÇÖªµÀ£º|x|=$\left\{\begin{array}{l}{x£¨x£¾0£©}\\{0£¨x=0£©}\\{-x£¨x£¼0£©}\end{array}\right.$£®ÏÖÔÚÎÒÃÇ¿ÉÒÔÓÃÕâÒ»½áÂÛÀ´»¯¼òº¬Óоø¶ÔÖµµÄ´úÊýʽ£¬ÏÖÔÚÎÒÃÇ¿ÉÒÔÓÃÕâÒ»½áÂÛÀ´»¯¼òº¬Óоø¶ÔÖµµÄ´úÊýʽ£¬È绯¼ò´úÊýʽ|x+1|+|x-2|ʱ£¬¿ÉÁîx+1=0ºÍx-2=0£¬·Ö±ðÇóµÃx=-1£¬x=2£¨³Æ-1£¬2·Ö±ðΪ|x+1|Óë|x-2|µÄÁãµãÖµ£©£®ÔÚʵÊý·¶Î§ÄÚ£¬ÁãµãÖµx=-1ºÍ£¬x=2¿É½«È«ÌåʵÊý·Ö³É²»Öظ´ÇÒ²»ÒÅ©µÄÈçÏÂ3ÖÖÇé¿ö£º
¢Ùx£¼-1£»¢Ú-1¡Üx£¼2£»¢Ûx¡Ý2£®
´Ó¶ø»¯¼ò´úÊýʽ|x+1|+|x-2|¿É·ÖÒÔÏÂ3ÖÖÇé¿ö£º
¢Ùµ±x£¼-1ʱ£¬Ô­Ê½=-£¨x+1£©-£¨x-2£©=-2x+1£»
¢Úµ±-1¡Üx£¼2ʱ£¬Ô­Ê½=x+1-£¨x-2£©=3£»
¢Ûµ±x¡Ý2ʱ£¬Ô­Ê½=x+1+x-2=2x-1£®×ÛÉÏÌÖÂÛ£¬Ô­Ê½=$\left\{\begin{array}{l}{-2x+1£¨x£¼-1£©}\\{3£¨-1¡Üx£¼2£©}\\{2x-1£¨x¡Ý2£©}\end{array}\right.$£®
ͨ¹ýÒÔÉÏÔĶÁ£¬ÇëÄã½â¾öÒÔÏÂÎÊÌ⣺
£¨1£©»¯¼ò´úÊýʽ|x+2|+|x-4|£®
£¨2£©Çó|x-1|-4|x+1|µÄ×î´óÖµ£®

·ÖÎö £¨1£©·ÖΪx£¼-2¡¢-2¡Üx£¼4¡¢x¡Ý4ÈýÖÖÇé¿ö»¯¼ò¼´¿É£»
£¨2£©·Öx£¼-1¡¢-1¡Üx¡Ü1¡¢x£¾1·Ö±ð»¯¼ò£¬½áºÏxµÄÈ¡Öµ·¶Î§È·¶¨´úÊýʽֵµÄ·¶Î§£¬´Ó¶øÇó³ö´úÊýʽµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©µ±x£¼-2ʱ£¬|x+2|+|x-4|=-x-2+4-x=-2x+2£»
µ±-2¡Üx£¼4ʱ£¬|x+2|+|x-4|=x+2+4-x=6£»
µ±x¡Ý4ʱ£¬|x+2|+|x-4|=x+2+x-4=2x-2£»
£¨2£©µ±x£¼-1ʱ£¬Ô­Ê½=3x+5£¼2£¬
µ±-1¡Üx¡Ü1ʱ£¬Ô­Ê½=-5x-3£¬-8¡Ü-5x-3¡Ü2£¬
µ±x£¾1ʱ£¬Ô­Ê½=-3x-5£¼-8£¬
Ôò|x-1|-4|x+1|µÄ×î´óֵΪ2£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˾ø¶ÔÖµ£¬½âÌâµÄ¹Ø¼üÊÇÄܸù¾Ý²ÄÁÏËù¸øÐÅÏ¢£¬ÕÒµ½ºÏÊʵķ½·¨½â´ð£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÔÚ¡÷ABCÖУ¬¡ÏBACÊÇÈñ½Ç£¬AB=AC£¬ADºÍBEÊǸߣ¬ÇÒAE=BE£¬ÇóÖ¤£ºAH=2BD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èô$\frac{1}{2}{x}^{2}{y}^{n-1}$Óë3xm+1yÊÇͬÀàÏÔòm+n=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®°´ÏÂÁйæÂÉÅÅÁеÄÒ»ÁÐÊý¶Ô£¨1£¬2£©£¬£¨4£¬5£©£¬£¨7£¬8£©£¬¡­£¬µÚ5¸öÊý¶ÔÊÇ£¨13£¬14£©£¬µÚn¸öÊý¶ÔÊÇ£¨3n-2£¬3n-1£©£®£¨nΪÕýÕûÊý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ºÏ²¢Í¬ÀàÏ
£¨1£©$\frac{1}{4}$x2y3-$\frac{7}{4}$x2y3£»            
£¨2£©4a+b2-£¨b2-3+2a£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®¶àÏî-2+4x2y+6x-x3y2ÊÇÎå ´ÎËÄ Ïîʽ£¬ÆäÖÐ×î¸ß´ÎÏîµÄÊÇ-x3y2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®£¨1£©-8+10+2-1£®
£¨2£©£¨-3£©¡Á£¨-$\frac{5}{6}$£©$¡Â£¨-1\frac{1}{4}£©$£®
£¨3£©£¨$\frac{1}{9}$+$\frac{2}{3}$-$\frac{1}{6}$£©¡Á£¨-36£©£®
£¨4£©42¡Á£¨-$\frac{2}{3}$£©¡Â$\frac{7}{2}$-£¨-12£©¡Â£¨-4£©£®
£¨5£©18-32¡Â8-£¨-4£©2¡Á5£®
£¨6£©-62+4¡Á£¨-$\frac{3}{2}$£©2-£¨-9£©¡Â£¨-$\frac{1}{{3}^{2}}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁÐÈ¥£¨Ìí£©À¨ºÅÕýÈ·×ö·¨µÄÓУ¨¡¡¡¡£©
A£®x-£¨y-x£©=x-y-zB£®-£¨x-y+z£©=-x-y-z
C£®x+2y-2z=x-2£¨y-z£©D£®-a+c+d+b=-£¨a-b£©+£¨c+d£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Å×ÎïÏßy=-3£¨x-1£©2-2µÄ¿ª¿Ú·½Ïò¡¢¶Ô³ÆÖáºÍ¶¥µã×ø±êÊÇ£¨¡¡¡¡£©
A£®¿ª¿ÚÏòÉÏ£¬¶Ô³ÆÖáΪֱÏßx=-1£¬¶¥µã£¨-1£¬-2£©
B£®¿ª¿ÚÏòÉÏ£¬¶Ô³ÆÖáΪֱÏßx=1£¬¶¥µã£¨1£¬-2£©
C£®¿ª¿ÚÏòÏ£¬¶Ô³ÆÖáΪֱÏßx=-1£¬¶¥µã£¨1£¬2£©
D£®¿ª¿ÚÏòÏ£¬¶Ô³ÆÖáΪֱÏßx=1£¬¶¥µã£¨1£¬-2£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸