精英家教网 > 初中数学 > 题目详情
梅华中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB的高度.如图,当阳光从正西方向照射过来时,旗杆AB的顶端A的影子落在教学楼前的坪地C处,测得影长CE=2m,DE=4m,BD=20m,DE与地面的夹角α=30度.在同一时刻,测得一根长为1m的直立竹竿的影长恰为4m.根据这些数据求旗杆AB的高度.(可能用到的数据:≈1.414,≈1.732,结果保留两个有效数字)

【答案】分析:根据题意过点C,E分别作CF⊥AB于点F,EH⊥BD的延长线于H,构造出直角三角形,利用勾股定理解答.
解答:解:如图,过点C,E分别作CF⊥AB于点F,EH⊥BD的延长线于H.
在Rt△DEH中,
∵DE=4m,∠EDH=30°,
∴EH=2m,
DH==2m
又∵=
∴AF=CF=(EF+CE)
=(BD+DH+CE)≈6.4.
∴AB=EH+AF≈8.4(m).
点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网梅华中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB的高度.如图,当阳光从正西方向照射过来时,旗杆AB的顶端A的影子落在教学楼前的坪地C处,测得影长CE=2m,DE=4m,BD=20m,DE与地面的夹角α=30度.在同一时刻,测得一根长为1m的直立竹竿的影长恰为4m.根据这些数据求旗杆AB的高度.(可能用到的数据:
2
≈1.414,
3
≈1.732,结果保留两个有效数字)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

梅华中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB的高度.如图,当阳光从正西方向照射过来时,旗杆AB的顶端A的影子落在教学楼前的坪地C处,测得影长CE=2m,DE=4m,BD=20m,DE与地面的夹角α=30度.在同一时刻,测得一根长为1m的直立竹竿的影长恰为4m.根据这些数据求旗杆AB的高度.(可能用到的数据:数学公式≈1.414,数学公式≈1.732,结果保留两个有效数字)

查看答案和解析>>

科目:初中数学 来源:2011年3月中考数学第一次模拟考试卷(解析版) 题型:解答题

(2006•梅州)梅华中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB的高度.如图,当阳光从正西方向照射过来时,旗杆AB的顶端A的影子落在教学楼前的坪地C处,测得影长CE=2m,DE=4m,BD=20m,DE与地面的夹角α=30度.在同一时刻,测得一根长为1m的直立竹竿的影长恰为4m.根据这些数据求旗杆AB的高度.(可能用到的数据:≈1.414,≈1.732,结果保留两个有效数字)

查看答案和解析>>

科目:初中数学 来源:2006年广东省梅州市中考数学试卷(解析版) 题型:解答题

(2006•梅州)梅华中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB的高度.如图,当阳光从正西方向照射过来时,旗杆AB的顶端A的影子落在教学楼前的坪地C处,测得影长CE=2m,DE=4m,BD=20m,DE与地面的夹角α=30度.在同一时刻,测得一根长为1m的直立竹竿的影长恰为4m.根据这些数据求旗杆AB的高度.(可能用到的数据:≈1.414,≈1.732,结果保留两个有效数字)

查看答案和解析>>

同步练习册答案