【题目】如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.
(1)若BM=BN,求t的值;
(2)若△MBN与△ABC相似,求t的值;
(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.
【答案】
(1)
解:∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,
∴∠B=30°,
∴AB=2AC=10,BC=5 .
由题意知:BM=2t,CN= t,
∴BN=5 - t,
∵BM=BN,
∴2t=5 - t
解得: .
(2)
解:分两种情况:①当△MBN∽△ABC时,
则 ,即 ,
解得:t= .
②当△NBM∽△ABC时,
则 ,即 ,
解得:t= .
综上所述:当t= 或t= 时,△MBN与△ABC相似.
(3)
解:过M作MD⊥BC于点D,则MD∥AC,
∴△BMD∽△BAC,
∴ ,
即 ,
解得:MD=t.
设四边形ACNM的面积为y,
∴y= = = .
∴根据二次函数的性质可知,当t= 时,y的值最小.
此时, .
【解析】(1)由已知条件得出AB=10,BC=5 . 由题意知:BM=2t,CN= t,BN=5 - t,由BM=BN得出方程2t=5 - t,解方程即可;(2)分两种情况:①当△MBN∽△ABC时,由相似三角形的对应边成比例得出比例式,即可得出t的值;②当△NBM∽△ABC时,由相似三角形的对应边成比例得出比例式,即可得出t的值;(3)过M作MD⊥BC于点D,则MD∥AC,证出△BMD∽△BAC,得出比例式求出MD=t.四边形ACNM的面积y=△ABC的面积﹣△BMN的面积,得出y是t的二次函数,由二次函数的性质即可得出结果.
科目:初中数学 来源: 题型:
【题目】如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于 AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是( )
A.CD⊥l
B.点A,B关于直线CD对称
C.点C,D关于直线l对称
D.CD平分∠ACB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一列按一定顺序和规律排列的数:
第一个数是 ;
第二个数是 ;
第三个数是 ;
…
对任何正整数n,第n个数与第(n+1)个数的和等于 .
(1)经过探究,我们发现:
设这列数的第5个数为a,那么 , , ,哪个正确?
请你直接写出正确的结论;
(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于 ”;
(3)设M表示 , , ,…, ,这2016个数的和,即 ,
求证: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,直线AB∥CD,点P在两平行线之间,写出∠BAP、∠APC、∠DCP满足的数量关系.
(2)如图2,直线AB与CD相交于点E,点P为∠AEC内一点,AQ平分∠EAP,CQ平分∠ECP,若∠AEC=40°,∠AQC=70°,求∠APC的度数.
(3)如图3,连接AD、CB交于点P,AQ平分∠BAD,CQ平分∠BCD,探究∠ABC、∠AQC、∠ADC满足的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣ 与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( )
A.点数都是偶数
B.点数的和为奇数
C.点数的和小于13
D.点数的和小于2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:
移植的棵数n | 1000 | 1500 | 2500 | 4000 | 8000 | 15000 | 20000 | 30000 |
成活的棵数m | 865 | 1356 | 2220 | 3500 | 7056 | 13170 | 17580 | 26430 |
成活的频率 | 0.865 | 0.904 | 0.888 | 0.875 | 0.882 | 0.878 | 0.879 | 0.881 |
估计该种幼树在此条件下移植成活的概率为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是( )
A.0.324πm2
B.0.288πm2
C.1.08πm2
D.0.72πm2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com