精英家教网 > 初中数学 > 题目详情
我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=-
1
100
(x-60)2+41
(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润Q=-
99
100
(100-x)2+
294
5
(100-x)+160
(万元).
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?
(1)∵每投入x万元,可获得利润P=-
1
100
(x-60)2+41(万元),
∴当x=60时,所获利润最大,最大值为41万元,
∴若不进行开发,5年所获利润的最大值是:41×5=205(万元);

(2)前两年:0≤x≤50,此时因为P随x的增大而增大,
所以x=50时,P值最大,即这两年的获利最大为:2×[-
1
100
(50-60)2+41]=80(万元),
后三年:设每年获利y,设当地投资额为a,则外地投资额为100-a,
∴Q=-
99
100
[100-(100-a)]2+
294
5
[100-(100-a)]+160=-
99
100
a2+
294
5
a+160,
∴y=P+Q=[-
1
100
(a-60)2+41]+[-
99
100
a2+
294
5
a+160]=-a2+60a+165=-(a-30)2+1065,
∴当a=30时,y最大且为1065,
∴这三年的获利最大为1065×3=3195(万元),
∴5年所获利润(扣除修路后)的最大值是:80+3195-50×2=3175(万元).

(3)有很大的实施价值.
规划后5年总利润为3175万元,不实施规划方案仅为205万元,故具有很大的实施价值.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,与y轴交于C点,抛物线y=ax2+bx+c经过A,B,C三点,顶点为F.
(1)求A,B,C三点的坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)已知M为抛物线上一动点(不与C点重合),试探究:
①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;
②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=
8
2
5
x2+bx+c经过点A(
3
2
,0)和点B(1,2
2
),与x轴的另一个交点为C.
(1)求抛物线的函数表达式;
(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;
(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.
①判断四边形OAEB的形状,并说明理由;
②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=
1
3
∠MFO时,请直接写出线段BM的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A1、A2、A3、…、An在抛物线y=-x2图象上,点B0、B1、B2、B3、…、Bn在y轴上(点B0与坐标原点O重合),若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都为等腰直角三角形,则A2011B2010的长为(  )
A.2010B.2011C.2010
2
D.2011
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C(如图),点C的坐标为(0,-3),且BO=CO.
(1)求出B点坐标和这个二次函数的解析式;
(2)求△ABC的面积;
(3)若P是抛物线对称轴上一个动点,求当PA+PC的值最小时P点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+mx过点A(4,0),O为坐标原点,Q是抛物线的顶点.
(1)求m的值;
(2)点P是x轴上方抛物线上的一个动点,过P作PH⊥x轴,H为垂足.有一个同学说:“在x轴上方抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点P运动至点Q时,折线P-H-O的长度最长”,请你用所学知识判断:这个同学的说法是否正确.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)当x为何值时,y>0;y<0?
(3)写出y随x的增大而减小的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=-
1
2
(x-
3
2
)2+
25
8
的图象在坐标原点为O的直角坐标系中,
(1)设这个二次函数的图象与x轴的交点是A、B(B在点A右边),与y轴的交点是C,求A、B、C的坐标;
(2)求证:△OAC△OCB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=2ax2+4ax+a2+2的一部分如图,那么该抛物线与x轴的另一交点坐标为______.

查看答案和解析>>

同步练习册答案