精英家教网 > 初中数学 > 题目详情

【题目】腰长为10,一条高为8的等腰三角形的底边长为

【答案】12或4 或8
【解析】解:①如图1
当AB=AC=10,AD=8,
则BD=CD= =6,
∴底边长为12;
②如图2.

当AB=AC=10,CD=8时,
则AD= =6,
∴BD=4,
∴BC= =4
∴此时底边长为4
③如图3:

当AB=AC=10,CD=8时,
则AD= =6,
∴BD=16,
∴BC=8
∴此时底边长为8
所以答案是:12或4 或8
【考点精析】本题主要考查了等腰三角形的性质和勾股定理的概念的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角);直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2﹣2ax+c与x轴一个交点的坐标为(﹣1,0),则一元二次方程ax2﹣2ax+c=0的根为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,AD平分∠BACADBC,垂足为DAN△ABC外角∠CAM的平分线,CEAN,垂足为E.

(1)求证:四边形ADCE是矩形;

(2)当△ABC满足什么条件时,四边形ADCE是正方形?给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2 x+2(a≠0)的图像与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).
(1)求抛物线与直线AC的函数解析式;
(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;
(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2 . 已知y与t的函数关系图像如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).

(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;
(2)求出线段BC、BE、ED的长度;
(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;
(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商厦用8万元购进纪念运动休闲衫,面市后供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元,商厦销售这种运动休闲衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完.

(1)商厦第一批和第二批各购进休闲衫多少件?

(2)请问在这两笔生意中,商厦共盈利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分校为了调查初三年级学生每周的课外活动时间,随机抽查了50名初三学生,对其平均毎周参加课外活动的时间进行了调查.由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:
(1)求m的值;
(2)计算50名学生的课外活动时间的平均数(每组时间用其组中值表示),对初三年级全体学生平均每周的课外活动吋问做个推断;
(3)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表法,求其中至少有1人课外活动时间在8~10小时的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A,B是反比例函数y= (k>0,x>0)图像上的两点,BC∥x轴,交y轴于点C,动点P纵坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图像大致为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并解决问题.

材料:一般地,个相同的因数相乘,记为.如此时,叫做以为底的对数,记为(即).一般地,若),则叫做以为底的对数,记为 (即).如4叫做以3为底81的对数,记为(即).

问题:

(1)计算以下各式的值:        

(2)写出之间满足的等量关系

(3)由(2)的结果,将归纳出的一般性结论填写在横线上

。(a>0a≠1,m>0,n>0)

查看答案和解析>>

同步练习册答案