【题目】2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注,某市一研究机构为了了解岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了如下尚不完整的频数分布表、频数分布走访图和扇形统计图:
组别 | 年龄段 | 频数(人数) |
第1组 | 5 | |
第2组 | ||
第3组 | 35 | |
第4组 | 20 | |
第5组 | 15 |
(1)请直接写出、的值及扇形统计图中第3组所对应的圆心角的度数;
(2)请补全上面的频数分布直方图;
(3)假设该市现有岁的市民300万人,问第4组年龄段关注本次大会的人数经销商有多少万人?
【答案】(1)20%,20,126°;(2)见详解;(3)60万人
【解析】
(1)根据题意和频数分布表中的数据,可以求得a、m的值和第3组人数在扇形统计图中所对应的圆心角的度数;
(2)根据(1)中a的值,可以将频数分布直方图补充完整;
(3)根据频数分布表中的数据可以计算出10~60岁年龄段的关注本次大会的人数约有多少.
解:(1)a=100﹣5﹣35﹣20﹣15=25,m%=(20÷100)×100%=20%,
∴m=20,
第3组人数在扇形统计图中所对应的圆心角是:,
(2)由(1)知,20≤x<30,有25人,
补全的频数分布直方图如下:
(3)(万人),
答:第4组年龄段的关注本次大会的人数约有60万人.
科目:初中数学 来源: 题型:
【题目】已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,AO=4,CO=2,接连接AD,BC、点H为BC中点,连接OH.
(1)如图1所示,求证:OH=AD且OH⊥AD;
(2)将△COD绕点O旋转到图2所示位置时,线段OH与AD又有怎样的关系,证明你的结论;
(3)请直接写出线段OH的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2(如图(2));正方形A2B2C2D2的面积为________,以此下去…,则正方形AnBnCnDn的面积为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,将绕点按逆时针方向旋转,得到.
(1)如图 1,当点在线段的延长线上时,求的度数;
(2)如图 2,连接,.若的面积为 3,求的面积;
(3)如图 3,点为线段中点,点是线段上的动点,在绕点按逆时针方向旋转的过程中,点的对应点是点,求线段长度的最大值与最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从相距420km的A、B两地相向而行,乙车比甲车先出发1小时,两车分别以各自的速度匀速行驶,途经C地(A、B、C三地在同一条直线上).甲车到达C地后因有事立即按原路原速返回A地,乙车从B地直达A地,甲、乙两车距各自出发地的路程y(千米)与甲车行驶所用的时间x(小时)的关系如图所示,结合图象信息回答下列问题:
(1)甲车的速度是 千米/时,乙车的速度是 千米/时;
(2)求甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;
(3)甲车出发多长时间后两车相距90千米?请你直接写出答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:数学课上,老师出示了这样一个问题:
如图1,在等边中,点、在上,且,直线交于点,交延长线于点,且,探究线段之间的数量关系,并证明.
某学习小组的同学经过思考,交流了自己的想法:
小明:“通过观察和度量,发现与存在某种数量关系”;
小强:“通过观察和度量,发现图1中有一条线段与相等”;
小伟:“通过构造三角形,证明三角形全等,进而可以得到线段之间的数量关系”.
……
老师:“保留原题条件,再过点作交于与相交于点(如图2)如果给出的值,那么可以求出的值”.
请回答:
(1)在图1中找出与数量关系,并证明;
(2)在图1中找出与线段相等的线段,并证明;
(3)探究线段之间的数量关系,并证明;
(4)若,求的值(用含的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在中,∠B=90°,,点D,E分别是边BC,AC的中点,连接将绕点C按顺时针方向旋转,记旋转角为.
问题发现:
当时,_____;当时,_____.
拓展探究:
试判断:当时,的大小有无变化?请仅就图2的情况给出证明.
问题解决:
当旋转至A、D、E三点共线时,直接写出线段BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表
一周诗词诵背数量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人数 | 10 | 10 | 15 | 40 | 25 | 20 |
请根据调查的信息
(1)活动启动之初学生“一周诗词诵背数量”的中位数为 ;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,是边上一点,连接,将矩形沿折叠,顶点恰好落在边上点处,延长交的延长线于点,连接.
(1)求的值;
(2)求证:四边形是菱形;
(3)如图2,,分别是线段,上的动点(与端点不重合),且,设,,请解决以下相关问题:
①写出关于的函数解析式;
②是否存在这样的点,使是等腰三角形?若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com