精英家教网 > 初中数学 > 题目详情
我们知道,一元二次方程主要有四种解法,分别是:因式分解法、直接开平方法、配方法和公式法.请在以下四个方程中任选一个,并用合适的方法解方程.
①2x2-7x+5=0  ②3x2-12x=0  ③2(x-6)2=72  ④x2-4x=5
请用合适的方法解这个方程.
分析:根一元二次方程的特点,确定合适的解决方法.
解答:解:(以下任答出1个即可)
①2x2一7x+5=0
(2x-5)(x-1)=0
解得:x1=
5
2
,x2=1;

②3x2-12x=0
3x(x-4)=0
解得:x1=0,x2=4;

③2(x-6)2=7
2(x-6)2=36
∴x-6=±6
即x1=12,x2=0;

④x2-4x=5
(x-2)2=9
x-2=±3
x=2±3
即x1=5,x2=-1.
点评:正确解一元二次方程,是初中学习的基本要求,正确选择正确的方法,是快速解决题目的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•永州)我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为(  )

查看答案和解析>>

科目:初中数学 来源:2013-2014学年江苏省扬州市邗江区九年级上学期期末考试数学试卷(解析版) 题型:填空题

我们知道,一元二次方程没有实数根,即不存在一个实数的平方等于.若我们规定一个新数“”,使其满足(即方程有一个根为).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有,从而对于任意正整数,我们可以得到,同理可得,,.那么的值为         .

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(湖南永州卷)数学(解析版) 题型:选择题

我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i22=(﹣1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为【    】

A.0       B.1       C.﹣1      D.i

 

查看答案和解析>>

科目:初中数学 来源:2013年湖南省永州市中考数学试卷(解析版) 题型:选择题

我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为( )
A.0
B.1
C.-1
D.i

查看答案和解析>>

同步练习册答案