A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 ①正确,如图1中,只要证明∠MCN+∠MDN=180°.
②正确,可以证明△ADM与△DCN全等.
③正确,如图3中,只要证明△ADM≌△CDN,推出AM=CN,DM=DN,因为AC=BC,推出CM=BN,即可证明.
④正确,如图4中,作DH⊥AC于H,DG⊥BC于G.只要证明四边形CHDG是正方形,△DHM≌△DGN,推出MH=NG,推出CM+CN=CH+MH+CG-NG=2CH,又因为AD=CD=$\sqrt{2}$CH,由此即可证明.
⑤正确,如图5中,由△DHM∽△DGN,推出$\frac{DM}{DN}$=$\frac{DH}{DG}$=$\frac{1}{2}$,设DM=x,则DG=2x,推出S△DMN=$\frac{1}{2}$•2x•x=x2,当DM⊥AC时,DM的值最小,此时DM=DH=$\sqrt{2}$,△DMN的面积最小值为2,当DM⊥AB时,DM的值最大,此时DM=AD=2,△DMN的面积的最大值为4,由此即可判断.
解答 解:①正确.理由如下:
如图1中,
∵∠ACB=90°,∠EDF=90°,
∴∠MCN+∠MDN=180°,
∴点C,M,D,N四点共圆.
②正确.理由如下:
如图2中,连接CD.
∵AC=BC.AD=DB.
∴CD⊥AB,CD=AD=DB,
∴∠ADC=∠MDN=90°,
∴∠ADM=∠CDN,
在△ADM和△CDN中,
$\left\{\begin{array}{l}{AD=DC}\\{∠A=∠DCN}\\{∠ADM=∠CDN}\end{array}\right.$,
∴△ADM≌△CDN.故②正确.
③正确.理由如下:
如图3中
∵CA=CB,∠ACB=90°,AD=DB,
∴CD=AD=DB,CD⊥AB,∠A=∠ACD=∠DCN=45°,
∴∠ADC=∠EDF=90°,
∴∠ADM=∠CDN,
在△ADM和△CDN中,
$\left\{\begin{array}{l}{∠ADM=∠CDN}\\{∠A=∠DCN}\\{AD=CD}\end{array}\right.$,
∴△ADM≌△CDN,
∴AM=CN,DM=DN,
∵AC=BC,
∴CM=BN,
∴DN•CM=BN•DM
④正确.理由如下:
如图4中,作DH⊥AC于H,DG⊥BC于G.
∵∠ACD=∠BCD=45°,
∴DH=DG,
∵∠DHC=∠HCG=∠CGD=90°,
∴四边形CHDG是矩形,∵DH=DG,
∴四边形CHDG是正方形,
∴∠HDG=∠MDN=90°,CH=CG,
∴∠MDH=∠GDN,
在△DHM和△DGN中,
$\left\{\begin{array}{l}{∠MDH=∠GDN}\\{∠DHM=∠DGN}\\{DH=DG}\end{array}\right.$,
∴△DHM≌△DGN,
∴MH=NG
∴CM+CN=CH+MH+CG-NG=2CH,
∵AD=CD=$\sqrt{2}$CH,
∴CM+CN=$\sqrt{2}$AD.
⑤正确.理由如下:
如图5中,作DH⊥AC于H,DG⊥BC于G.
∵AB=6,BD=2AD,
∴AD=2,BD=4,
∴AH=DH=$\sqrt{2}$,DG=GB=2$\sqrt{2}$,
∵∠DHC=∠HCG=∠CGD=90°,
∴四边形CHDG是矩形,
∴∠HDG=∠MDN,
∴∠MDH=∠NDG,∵∠DHM=∠DGN=90°,
∴△DHM∽△DGN,
∴$\frac{DM}{DN}$=$\frac{DH}{DG}$=$\frac{1}{2}$,设DM=x,则DG=2x,
∴S△DMN=$\frac{1}{2}$•2x•x=x2,
当DM⊥AC时,DM的值最小,此时DM=DH=$\sqrt{2}$,△DMN的面积最小值为2,
当DM⊥AB时,DM的值最大,此时DM=AD=2,△DMN的面积的最大值为4,
∴2≤S△DMN≤4.
故选D.
点评 本题考查四点共圆、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质,最值问题等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 20 | B. | 24 | C. | 20或24 | D. | 24或26 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | b表示负数,a,c表示正数,且|a|>|b| | B. | b表示负数,a,c表示正数,且|b|<|c| | ||
C. | b表示负数,a,c表示正数,且|c|<|b| | D. | b表示负数,a,c表示正数,且|-a|>|b| |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com