【题目】将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是______________.
科目:初中数学 来源: 题型:
【题目】如图,直线和反比例函数的图象都经过点,点在反比例函数的图象上,连接.
(1)求直线和反比例函数的解析式;
(2)直线经过点吗?请说明理由;
(3)当直线与反比例数图象的交点在两点之间.且将分成的两个三角形面积之比为时,请直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线l1:y=x2+bx+c与它的对称轴x=﹣2交于点A,且经过点B(0,﹣2).
(1)求抛物线l1的解析式;
(2)如图1,直线y=kx+2k﹣8(k<0)与抛物线l1交于点E,F,若△AEF的面积为,求k的值;
(3)如图2,将抛物线l1向下平移n(n>0)个单位长度得到抛物线l2,抛物线l2与y轴交于点C,过点C作x轴的平行线交抛物线l2于另一点D;抛物线l2的对称轴与x轴的交于点M,P为线段OC上一点,若△POM与△PCD相似,并且符合该条件的点P有且只有2个,求n的值及相应点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角△ABC中,延长BC到点D,点O是AC边上的一个动点,过点O作直线MN∥BC,MN分别交∠ACB、∠ACD的平分线于E,F两点,连接AE、AF,在下列结论中:①OE=OF;②CE=CF;③若CE=12,CF=5,则OC的长为6;④当AO=CO时,四边形AECF是矩形,其中正确的有( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示:按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转……连续经过六次旋转.在旋转的过程中,当正方形和正六边形的边重合时,点B,M间的距离可能是( )
A. 0.5B. 0.7C. ﹣1D. ﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是 ( )
A. 有三个实数根 B. 有两个实数根 C. 有一个实数根 D. 无实数根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象相交于、两点,其中点的坐标为,点的坐标为.
(1)根据图象,直接写出满足的的取值范围;
(2)求这两个函数的表达式;
(3)点在线段上,且,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学习了矩形后,数学活动小组开展了探究活动.如图1,在矩形中,,,点在上,先以为折痕将点往右折,如图2所示,再过点作,垂足为,如图3所示.
(1)在图3中,若,则的度数为______,的长度为______.
(2)在(1)的条件下,求的长.
(3)在图3中,若,则______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com