精英家教网 > 初中数学 > 题目详情
(2013•椒江区一模)我们把弧长等于半径的扇形叫等边扇形.如图,扇形OAB是等边扇形,设OA=R,下列结论中:①∠AOB=60°;②扇形的周长为3R;③扇形的面积为
1
2
R2
;④点A与半径OB中点的连线垂直OB;⑤设OA、OB的垂直平分线交于点P,以P为圆心,PA为半径作圆,则该圆一定会经过扇形的弧AB的中点.其中正确的个数为(  )
分析:根据弧长的计算公式判断①错误;
根据扇形的周长定义判断②正确;
根据S扇形=
1
2
lR(其中l为扇形的弧长)判断③正确;
先由等边扇形的定义得出AB<OA,再根据等腰三角形三线合一的性质得出AM与OB不垂直,判断④错误;
由线段垂直平分线的性质及三角形两边之和大于第三边得出OP=PA>
1
2
OA,又OA=OC,OP+PC=OC,则PC<
1
2
OC<OP=AP,即PC<圆P的半径,判断⑤错误.
解答:解:①设∠AOB=n°,
∵OA=OB=
AB
=R,
∴R=
nπR
180

∴n=
180
π
<60,故①错误;

②扇形的周长为:OA+OB+
AB
=R+R+R=3R,故②正确;

③扇形的面积为:
1
2
AB
•OA=
1
2
R•R=
1
2
R2
,故③正确;

④如图,设半径OB的中点为M,连接AM.
∵OA=OB=
AB
=R,
∴AB<R=OA,
∵OM=MB,
∴AM与OB不垂直,故④错误;

⑤如图,设弧AB的中点为C.
∵OP=PA>
1
2
OA,
∵OA=OC,
∴OP>
1
2
OC,
∵OP+PC=OC,
∴PC<
1
2
OC<OP=AP,
即PC<圆P的半径,
∴以P为圆心,PA为半径作圆,则该圆一定不会经过扇形的弧AB的中点C.
故选B.
点评:本题考查了弧长的计算,扇形的周长与面积,等腰三角形、线段垂直平分线的性质,三角形三边关系定理,三点共圆的条件,综合性较强,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•椒江区一模)计算(-ab-2-2的结果是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•椒江区一模)为迎接中考体育测试,小丁努力进行实心球训练,成绩不断进步,连续五次测试成绩分别为6分,7分,8分,9分,10分,那么数据6,7,8,9,10的方差为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•椒江区一模)我们把三角形内部的一个点到这个三角形三边所在直线距离的最小值叫做这个点到这个三角形的距离.如图1,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,如果PE≥PF≥PD,则称PD的长度为点P到△ABC的距离.如图2、图3,在平面直角坐标系中,已知A(6,0),B(0,8),连接AB.
(1)若P在图2中的坐标为(2,4),则P到OA的距离为
4
4
,P到OB的距离为
2
2
,P到AB的距离为
0.8
0.8
,所以P到△AOB的距离为
0.8
0.8

(2)若点Q是图2中△AOB的内切圆圆心,求点Q到△AOB距离的最大值;
(3)若点R是图3中△AOB内一点,且点R到△AOB的距离为1,请画出所有满足条件的点R所形成的封闭图形,并求出这个封闭图形的周长.(画图工具不限)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•椒江区一模)已知,在平面直角坐标系xOy中,点A的坐标为(0,2),点P(m,n)是抛物线y=
14
x2+1
上的一个动点.
(1)如图1,过动点P作PB⊥x轴,垂足为B,连接PA,请通过测量或计算,比较PA与PB的大小关系:PA
=
=
PB(直接填写“>”“<”或“=”,不需解题过程);
(2)请利用(1)的结论解决下列问题:
①如图2,设C的坐标为(2,5),连接PC,AP+PC是否存在最小值?如果存在,求点P的坐标;如果不存在,简单说明理由;
②如图3,过动点P和原点O作直线交抛物线于另一点D,若AP=2AD,求直线OP的解析式.

查看答案和解析>>

同步练习册答案