精英家教网 > 初中数学 > 题目详情
如图,抛物线y=x2-2x-2交x轴于A、B两点,顶点为C,经过A、B、C三点的圆的圆心为M.
(1)求圆心M的坐标;
(2)求⊙M上劣弧AB的长;
(3)在抛物线上是否存在一点D,使线段OC和MD互相平分?若存在,直接写出点D的坐标;若不存在,请说明理由.
(1)∵y=x2-2x-2∴y=(x-1)2-3,
∴对称轴为x=1,顶点C(1,-3).
又∵抛物线y=x2-2x-2与x轴交点A(1-
3
,0)、B(1+
3
,0),
AB=2
3

作抛物线对称轴x=1交AB于点N,则N(1,0),
∴圆心M在对称轴x=1上,连接MB,
∵⊙M中,MN⊥AB,
BN=
1
2
AB=
3

设⊙M半径为r,则MC=MB=r,
∵C(1,-3),
∴CN=3
∴MN=CN-MC=3-r.
∵Rt△BMN中MN2+BN2=MB2
(3-r)2+(
3
)2=r2
解得r=2
∴MN=3-r=3-2=1
∵ON=1
∴圆心M的坐标为(1,-1)

(2)∵△BMN中,∠MNB=90°,MB=r=2,MN=1
cos∠NMB=
MN
MB
=
1
2

∴∠NMB=60°
∴∠AMB=2∠NMB=120°
∴⊙M上劣弧AB的长为
120°×πr
180
=
4
3
π


(3)若线段OC和MD互相平分,则四边形OMCD必定是平行四边形,
∴MCOD且MC=OD.
∵MC=r=2,
∴点D即为点O向下平移2个单位得点,
∴点D坐标为(0,-2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.
(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为
6
5
,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,平面直角坐标系xOy中,抛物线y=
1
2
x2+bx+c
与x轴交于A、B两点,点C是AB的中点,CD⊥AB且CD=AB.直线BE与y轴平行,点F是射线BE上的一个动点,连接AD、AF、DF.
(1)若点F的坐标为(
9
2
,1),AF=
17

①求此抛物线的解析式;
②点P是此抛物线上一个动点,点Q在此抛物线的对称轴上,以点A、F、P、Q为顶点构成的四边形是平行四边形,请直接写出点Q的坐标;
(2)若2b+c=-2,b=-2-t,且AB的长为kt,其中t>0.如图2,当∠DAF=45°时,求k的值和∠DFA的正切值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,矩形ABCO的顶点A、C分别在y轴、x轴正半轴上,点P在AB上,PA=1,AO=2.经过原点的抛物线y=mx2-x+n的对称轴是直线x=2.
(1)求出该抛物线的解析式.
(2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C.现在利用图2进行如下探究:
①将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转.请你观察、猜想,在这个过程中,
PE
PF
的值是否发生变化?若发生变化,说明理由;若不发生变化,求出
PE
PF
的值.
②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF为等腰三角形?若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c的图象交x轴于点A(x0,0)和点B(2,0),与y轴的正半轴交于点C,其对称轴是直线x=-1,tan∠BAC=2,点A关于y轴的对称点为点D.
(1)确定A、C、D三点的坐标;
(2)求过B、C、D三点的抛物线的解析式;
(3)若过点(0,3)且平行于x轴的直线与(2)小题中所求抛物线交于M、N两点,以MN为一边,抛物线上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式;
(4)当
1
2
<x<4时,(3)小题中平行四边形的面积是否有最大值?若有,请求出;若无,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c(经过原点)与x轴相交于N点,直线y=kx+4与坐标轴分别相交于A、D两点,与抛物线相交于B(1,m)和C(2,2)两点.
(1)求直线与抛物线的表达式;
(2)求证:C点是△AOD的外心;
(3)若(1)中的抛物线,在x轴上方的部分,有一动点P(x,y),设∠PON=α.当sinα为何值时,△PON的面积有最大值?
(4)若P点保持(3)中运动路线,是否存在△PON,使得其面积等于△OCN面积的
9
16
?若存在,求出动点P的位置;若不存在,请说出理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=ax2的图象过(2,1),则二次函数的表达式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某塑料大棚的截面如图所示,曲线部分近似看作抛物线.现测得AB=6米,最高点D到地面AB的距离DO=2.5米,点O到墙BC的距离OB=1米.借助图中的直角坐标系,回答下列问题:
(1)写出点A,B的坐标;
(2)求墙高BC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售.镇政府对该花木产品每年固定投资x万元,所获利润为P=-
1
50
(x-30)2+10
万元.为了响应我国西部大开发的宏伟决策,镇政府在制定经济发展的10年规划时,拟定开发花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元.若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路;后5年公路修通时,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每年固定投资x万元可获利润Q=-
49
50
(50-x)2+
194
5
(50-x)+308
万元.
(1)若不进行开发,求10年所获利润的最大值是多少?
(2)若按此规划进行开发,求10年所获利润的最大值是多少?
(3)若按此规划进行开发后,后5年所获利润共为2400万元,那么当本地销售投资金额大于外地销售投资金额时,每年用于本地销售投资的金额约为多少万元?(
13
≈3.606
55
≈7.416
,计算结果保留1位小数)

查看答案和解析>>

同步练习册答案