精英家教网 > 初中数学 > 题目详情
如图,抛物线y=-x2+x+c与x轴交于A,B两点,与y轴交于点C,且点B的坐标为B(-2,0).
(1)求抛物线解析式;
(2)点P在抛物线上,且点P的横坐标为x(-2<x<0),设△PBC的面积为S,求S与x之间的函数关系式,并求S的最大值;
(3)点M(m,n)是直线AC上的动点.设m=2-a,如果在两个实数m与n之间(不包括m和n)有且只有一个整数,求实数a的取值范围.
(1)如图,∵抛物线y=-x2+x+c与x轴交于A,B两点,点B的坐标为B(-2,0).
所以,-(-2)2+(-2)+c=0,即-6+c=0,
解得,c=6.
则该抛物线解析式是y=-x2+x+6;

(2)由(1)知,该抛物线解析式是y=-x2+x+6.
易求C(0,6).
设直线BC的解析式为y=k1x+6(k1≠0),则-2k1+6=0,
解得k1=3,
∴直线BC的解析式为y=3x+6.
∵点P的横坐标为x(-2<x<0),
∴F(x,3x+6),P(x,-x2+x+6),
∴PF=-x2+x+6-(3x+6)
=-x2-2x.
∴S=S△BPF+S△PCF
=
1
2
|PF|•|OB|=-x2-2x=-(x+1)2+1,
∵-2<x<0,
∴当x=-1时,S最大=1.
综上所述,S与x之间的函数关系式是S=-x2-2x[或S=-(x+1)2+1],S的最大值是1;

(3)由(1)知,该抛物线解析式是y=-x2+x+6.则A(3,0).易求C(0,6).
设直线AC的解析式为y=k2x+6(k1≠0),则3k2+6=0,
解得k2=-2,
∴直线AC的解析式为y=-2x+6.
由已知M(2-a,2a+2),易知,m≠n,2-a≠2a+2,则a≠0.
若a>0,m<1<n,由题设m≥0,n≤6,
2-a<1
2a+2≤6

解不等式组的解集是:1<a≤2;
若a<0,n<1<m,由题设n≥0,m≤6,
2-a>1
2a+2≥6

解得:-2≤a<1;
综上:a的取值范围是:-2≤a<0,0<a≤2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(6)一辆宽6m的货车要通过跨度为8m、拱高为4m的单行抛物线隧道(从正中通过),为了保证安全,车顶离隧道顶部至少要t.6m的距离,货车的限高为多少?
(6)若将(6)中的单行道改为双行道,即货车必须从隧道中线的右侧通过,货车的限高应是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-
1
2
x2+bx+4
与x轴和y轴的正半轴分别交于点A和B,已知A点坐标为(4,0).
(1)求抛物线的解析式.
(2)如图,连接AB,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式.
(3)若抛物线y=-
1
2
x2+bx+4
上有一点F(-k-1,-k2+1),当m,n为何值时,∠PMQ的边过点F?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-
1
4
x2+2x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)求抛物线的顶点坐标;
(2)求出球飞行的最大水平距离;
(3)若小明第二次仍从此处击球,使其最大高度不变,而球刚好进洞,则球飞行的路线满足抛物线的解析式是什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

为解决药价虚高给老百姓带来的求医难的问题,国家决定对某药品分两次降价.若设平均每次降价的百分率为x,该药品的原价是m元,降价后的价格是y元,则y与x的函数关系式______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=-x2+2bx-(2b-1)(b为常数)与x轴相交于A(x1,0),B(x2,0)(x2>x1>0)两点,设OA•OB=3(O为坐标系原点).
(1)求抛物线的解析式;
(2)设抛物线的顶点为C,抛物线的对称轴交x轴于点D,求证:点D是△ABC的外心;
(3)在抛物线上是否存在点P,使S△ABP=1?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是(  )
A.6B.2
6
C.2
5
D.2
2
+2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小敏在某次投篮中,球的运动路线是抛物线y=-
1
5
x2+3.5
的一部分(如图),若命中篮圈中心,则他与篮底的距离l是______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向通道,上下底之间有两条纵向通道,各通道的宽度相等.设通道的宽为x米.
(1)用含x的式子表示横向通道的面积;
(2)当三条通道的面积是梯形面积的八分之一时,求通道的宽;
(3)根据设计的要求,通道的宽不能超过8米.如果修建通道的总费用(万元)与通道的宽度成正比例关系,比例系数是5.5,花坛其余部分的绿化费用为每平方米0.02万元,那么当通道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?

查看答案和解析>>

同步练习册答案