精英家教网 > 初中数学 > 题目详情
12.已知二次函数y=ax2+bx+3的图象过点(-1,8)、(1,0),求这个二次函数的表达式.

分析 把已知两点的坐标代入入y=ax2+bx+3得到关于a、b的方程组,然后解方程组求出a、b即可.

解答 解:把(-1,8)、(1,0)代入y=ax2+bx+3得$\left\{\begin{array}{l}{a-b+3=8}\\{a+b+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=-4}\end{array}\right.$,
所以二次函数的解析式为y=x2-4x+3.

点评 本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.在△ABC中,CD平分∠ACB,AD⊥CD于点D,交BC边于点E,DF∥BC,交AB边于点F,交AC边于点G,点H在FG的延长线上,GH=DG,连接AF、CF.
(1)如图1,求证:四边形ADCH为矩形;
(2)如图2,当∠ACB=60°,DG=2FD时,请直接写出图中与线段AD长相等的线段.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)$\sqrt{3{a}^{2}}$÷$\sqrt{\frac{a}{2}}$×$\frac{1}{2}$$\sqrt{\frac{2a}{3}}$; 
(2)($\sqrt{3}$-$\sqrt{2}$)2010×($\sqrt{3}$+$\sqrt{2}$)2011; 
(3)($\sqrt{48}$-$\sqrt{24}$+$\sqrt{12}$)÷$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解一元二次方程:
(1)x2-4x+1=0(配方法);                       
(2)2(x-2)=3x(x-2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.求满足下列各式的未知数x
(1)27x3+125=0                         
(2)(x+2)2=16.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在△ABC中,DE∥BC,若$\frac{AD}{AB}$=$\frac{3}{4}$,DE=9,则BC的长为12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知关于x的一元二次方程x2-mx+m-1=0.
(1)求证:无论m取任何实数,方程总有实数根;
(2)若抛物线y=x2-mx+m-1经过(k-1,8)和(-k+5,8)两点,求此抛物线的解析式;
(3)在(2)的条件下,若此抛物线与x轴交与A、B(点A在点B的左边),M(a,b)为抛物线上任意一点,若0°<∠MAB≤45°,请直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简,再求值:(2x2-3xy+4)-2(3xy-x2+2),其中x=2  y=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解方程:
(1)x2-4x+3=0   (用配方法);      
(2)x (x-4)=2-8x.(公式法).

查看答案和解析>>

同步练习册答案