分析 (1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;
(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
解答 解:(1)由題意得,
在Rt△ADC中,AD=$\frac{CD}{tan30°}$=$\frac{24}{\frac{\sqrt{3}}{3}}$=24$\sqrt{3}$(米),
在Rt△BDC中,BD=$\frac{CD}{tan60°}$=$\frac{24}{\sqrt{3}}$=8$\sqrt{3}$,
则AB=AD-BD=16$\sqrt{3}$;
(2)不超速.
理由:∵汽车从A到B用时2秒,
∴速度为24.2÷2=12.1(米/秒),
∵12.1×3600=43560(米/时),
∴该车速度为43.56千米/小时,
∵小于45千米/小时,
∴此校车在AB路段不超速.
点评 此题考查了解直角三角形的应用问题.此题难度适中,解题的关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4$\sqrt{3}$-2$\sqrt{3}$=2 | B. | 方程3x2+27=0的解是x=±3 | ||
C. | 等弧所对的圆周角相等 | D. | 等边三角形是中心对称图形 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com