精英家教网 > 初中数学 > 题目详情

如图所示,已知△ABC中,∠BAC=90°,AB=AC,∠BAD=30°,AD=AE,则∠EDC的度数为(  )

A、10°      B、15°      C、20°     D、30°

 

【答案】

B

【解析】∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形, ∴∠B=45°,又∵∠BAD=30°,∴∠DAE= ∠BAC -∠BAD =60°,而AD=AE,∴△ADE为等边三角形,即∠ADE= 60°,∵∠ADC是△ABD的一个外角, ∴∠ADC=∠B+∠BAD=75°,而∠EDC=∠ADC-∠ADE=15°.

试题分析:要从题目中找到要求角相关的条件,由题, ∠BAC=90°,AB=AC,所以△ABC为等腰直角三角形,所以∠B=45°,又因为∠BAD=30°,所以∠DAE= ∠BAC -∠BAD =60°,而AD=AE,所以△ADE为等边三角形,即∠ADE= 60°,因为∠ADC是△ABD的一个外角,所以∠ADC=∠B+∠BAD=75°,而∠EDC=∠ADC-∠ADE=15°.

考点:三角形和三角形的外角.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系.要求:(1)、(2)直接写出结论,(3)、(4)写出结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB为圆O的直径,AC为弦,OD∥BC交AC于D,OD=2cm,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB=AC,BD⊥AC,试说明∠BAC=2∠CBD.

查看答案和解析>>

同步练习册答案