精英家教网 > 初中数学 > 题目详情

(本小题满分8分)
已知抛物线yax2bx+6与x轴交于AB两点(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,且OB=OCtan∠ACO=,顶点为D
【小题1】(1)求点A的坐标.
【小题2】(2)求直线CDx轴的交点E的坐标.
【小题3】(3)在此抛物线上是否存在一点F使得以点ACEF为顶点的四边形是平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
【小题4】(4)若点M(2,y)是此抛物线上一点,点N是直线AM上方的抛物线上一动点,当点N运动到什么位置时,四边形ABMN的面积S最大? 请求出此时S的最大值和点N的坐标.
【小题5】(5)点P为此抛物线对称轴上一动点,若以点P为圆心的圆与(4)中的直线AMx轴同时相切,则此时点P的坐标为      .


【小题1】解:(1)根据题意,得C(0,6).
在Rt△AOC中,OC=6,
OA=1. ∴A(-1,0)
【小题2】(2)∵,∴OB=3. ∴B(3,0).
由题意,得  解得
.
D(1,8).   ……………………………………………………………………2分
可求得直线CD的解析式为.
E(-3,0).
【小题3】(3)假设存在以点ACFE为顶点的平行四边形,
F1(2,6),F2(-2,6),F3(-4,-6).
经验证,只有点(2,6)在抛物线上,
F(2,6)
【小题4】(4)如图,作NQy轴交AM于点Q,设Nm, ).
x=2时,y=6,∴M(2,6).
可求得直线AM的解析式为.
Qm,2m+2).
NQ.
,其中
∴当最大时,值最大.

,
,
.
∴当时,的最大值为.
的最大值为.……………………………………………………………………6分
时,
N).  
【小题5】(5)P1(1,),P2(1,). …………………………………………8分
说明:写成P1(1,),P2(1,)不扣分

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本小题满分10分)

已知:如图,AD、BC是的两条弦, 且.求证:. 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分9分)已知AB两地的路程为240千米,某经销商每天都要用汽
车或火车将x吨保鲜品一次性由A地运往B地,受各种因素限制,下一周只能采用汽车和
火车中的一种进行运输,且须提前预订.。现在有货运收费项目及收费标准表,行驶路程S
(千米)与行驶时间t(时)的函数图象(如图13中①),上周货运量折线统计图(如图13
中②)等信息如下:

        
(1)汽车的速度为__________千米/时,火车的速度为_________千米/时;
(2)设每天用汽车和火车运输的总费用分别为y(元)和y(元),分别求yyx的函数关系式(不必写出x的取值范围)及x为何值时yy;(总费用=运输费+冷藏费+固定费用)
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前下周预定哪种运输工具,才能使每天的运输总费用较省?

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分5分)
已知直线经过点M(2,1),且与x轴交于点A,与y轴交于点B.

(1)求k的值;
(2)求A、B两点的坐标;
(3)过点M作直线MP与y轴交于点P,且△MPB的面积为2,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分14分)
已知:如图,抛物线与y轴交于点C(0,), 与x轴交于点A、 B,点A的坐标为(2,0).

(1)求该抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PD∥BC,交AC于点D,连接CP.当△CPD的面积最大时,求点P的坐标;
(3)若平行于x轴的动直线与该抛物线交于点Q,与直线BC交于点F,点M 的坐标为(,0).问:是否存在这样的直线,使得△OMF是等腰三角形?若存  在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年河南省周口市初三下学期第二十七章相似三角形检测题 题型:解答题

(本小题满分7分)

已知:关于的一元二次方程

(1)若方程有两个不相等的实数根,求的取值范围;

(2)在(1)的条件下,求证:无论取何值,抛物线y=总过轴上的一个固定点;

(3)若为正整数,且关于的一元二次方程有两个不相等的整数根,把抛物线y=向右平移4个单位长度,求平移后的抛物线的解析式.

 

查看答案和解析>>

同步练习册答案