精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知点A(-3,0)和B(1,0),直线y=kx-4经过点A并且与y轴交于点C.
(1)求点C的坐标;
(2)求经过A、B、C三点的抛物线的解析式和对称轴;
(3)半径为1个单位长度的动圆⊙P的圆心P始终在抛物线的对称轴上.当点P的纵坐标为5时,将⊙P以每秒1个单位长度的速度在抛物线的对称轴上移动.那么,经过几秒,⊙P与直线AC开始有公共点?经过几秒后,⊙P与直线AC不再有公共点?
分析:(1)直线AC的解析式中,令x=0,即可求出C点的坐标.
(2)已知了抛物线图象上的三点坐标,可利用待定系数法求得该抛物线的解析式,进而可用公式法或配方法求出抛物线的对称轴方程.
(3)设当直线与圆开始有交点时,此圆为⊙P1,直线与与圆开始没有交点时,圆为⊙P2,那么欲求时间就必须求出PP1、PP2的值,设抛物线的对称轴与x轴交于点M,与直线AC交于点N;易求得直线AC的解析式,联立抛物线的解析式可求得点N的坐标,即可得MN的长,设⊙P1、⊙P2与直线AC的切点分别为D、E,易证得△NDP1∽△COA,根据相似三角形的比例线段即可求得P1N的值,从而由P1M=MN-NP1求得点P1的坐标,同理可求得点P2的坐标,已知了P点的纵坐标,即可求得PP1、PP2的长,由此得解.
解答:解:(1)令x=0,y=-4,
∴点C的坐标为(0,-4).

(2)设过A(-3,0),B(1,0),C(0,-4)的函数解析式为:y=a(x+3)(x-1),
则有:精英家教网a(0+3)(0-1)=-4,
即a=
4
3

∴抛物线的解析式为:y=
4
3
(x+3)(x-1)=
4
3
x2+
8
3
x-4,
对称轴为x=-
-3+1
2
,即x=-1.

(3)在Rt△MOC中,OA=3,OC=4,
∴CA=
OA2+OC2
=
32+42
=5,
当⊙P向上移动时,永远不会与直线AC由公共点;
当⊙P向下移动时,设⊙P与直线AC有一个公共点的位置如图中的⊙P1和⊙P2
⊙P1与直线AC相切于点D,⊙P2与直线AC相切于点E,连接P1D;
则∠NDP1=90°,又∵MN∥OC,∴∠DNP1=∠ACO;
又∵∠NDP1=∠COA=90°,∴△NDP1∽△COA,
NP1
CA
=
P1D
OA
NP1
5
=
1
3
,NP1=
5
3

同理NP2=
5
3
,把A(-3,0)代入y=kx-4中,-3k-4=0得k=-
4
3

∴直线y=-
4
3
x-4,把x=-1代入上式,得y=-
8
3

∴MN=|-
8
3
|=
8
3

∴MP1=MN-NP1=
8
3
-
5
3
=1,
∴PP1=PM+MP1=5+1=6;
PP2=PP1+2NP1=6+2×
5
3
=9
1
3
,tP→P1=6÷1=6(秒),tP→P2=9
1
3
÷1=9
1
3
(秒);
综上所述,经过6秒⊙P与直线AC开始有公共点,经过9
1
3
秒后,⊙P与直线AC不再有公共点.
点评:此题主要考查了函数图象与坐标轴交点坐标的求法、二次函数解析式的确定、直线与圆的位置关系、切线的性质等知识,综合性强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,已知点D是∠ABC的平分线上一点,点P在BD上,PA⊥AB,PC⊥BC,垂足分别为A,C、下列结论错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点C为反比例函数y=-
6x
上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点A、B、C、D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为(  )
A、
3
2
B、
3
-
3
C、2
3
D、4
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点D为△ABC中AC边上一点,且AD:DC=3;4,设
BA
=
a
BC
b

(1)在图中画出向量
BD
分别在
a
b
方向上的分向量;
(2)试用
a
b
的线性组合表示向量
BD

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点C为AB上一点,AC=12cm,CB=
23
AC,D、E分别为AC、AB的中点.
(1)图中共有
10
10
线段.
(2)求DE的长.

查看答案和解析>>

同步练习册答案