【题目】某市高中招生体育考试前教育部门为了解全市九年级男生考试项目的选择情况(每人限选一项),对全市部分九年级男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)将上面的条形统计图补充完整;
(2)假定全市九年级毕业学生中有5500名男生,试估计全市九年级男生中选“50米跑”的人数有多少人?
(3)甲、乙两名九年级男生在上述选择率较高的三个项目:B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球和立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.
【答案】(1)1000(2)2200(3)
【解析】试题分析:(1)用选择A的人数除以所占的百分比求出总人数,再乘以B所占的百分比求出B的人数,然后补全条形统计图即可;
(2)用5500乘以选50米跑所占的百分比,计算即可得解;
(3)画出树状图,然后根据概率公式列式即可得解.
试题解析:(1)被调查的学生总人数为150÷15%=1000(人),
选择B项目的人数为1000×(1-15%-20%-40%-5%)=1000×20%=200(人),
补全统计图如图所示;
(2)5500×40%=2200(人),估计全市初三男生中选“50米跑”的人数有2200人;
(3)根据题意画出树状图如下:
所有等可能结果有9种:BB、BC、BD、CB、CC、CD、DB、DC、DD,同时选择B和D的有2种可能,即BD和DB,∴P(同时选择B和D)=.
科目:初中数学 来源: 题型:
【题目】如图 (1)所示,圆内接△ABC中,AB=BC=CA,OD,OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G.
(1)求证阴影部分四边形OFCG的面积是△ABC面积的;
(2)如图 (2)所示,若∠DOE保持120°角度不变,求证当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知, 、均为等边三角形,点是内的点
(1)如图①,说明的理由;
(2)如图②,当点在线段上时,求的度数;
(3)当为等腰直角三角形时,________度(直接写出客案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为3cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为____________s时,BP与⊙O相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在数轴上A点表示数,B点表示数,、满足||+||=0;
(1)点A表示的数为_____;点B表示的数为_____;
(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),
①当t=1时,甲小球到原点的距离=_____;乙小球到原点的距离=_____.
当t=3时,甲小球到原点的距离=_____;乙小球到原点的距离=_____.
②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+3与反比例函数y=的图像相交于点B(a,5),且与x轴相交于点A
(1)求反比例函数的表达式.
(2)若P为反比例函数图像上一点,且△AOP的面积是△AOB的面积的,请求出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com