精英家教网 > 初中数学 > 题目详情
17.不等式组$\left\{\begin{array}{l}{x>4}\\{x>m}\end{array}\right.$的解集是x>4,那么m的取值范围是m≤4.

分析 根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

解答 解:不等式组$\left\{\begin{array}{l}{x>4}\\{x>m}\end{array}\right.$的解集是x>4,得m≤4,
故答案为:m≤4.

点评 本题考查了不等式组解集,求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.“x与3的差大于$\frac{1}{2}$”用不等式表示为x-3>$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.2015年4月l8日周杰伦“摩天轮2”演唱会在重庆奥体中心如期举行.小王开车从家出发前去观看,预计1个小时能到达,可当天路上较为拥堵,行驶了半个小时,刚好行驶了一半路程,道路被“堵死”,堵了几分钟突然发现旁边刚好有一个轻轨站,于是小王将车停在轻轨站的车库,然后坐轻轨前往,结果按预计时间到达.下面能反映小王距离奥体中心的距离y (千米)与时间x (小时)的函数关系的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知:如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,BD=2DC,AD,BE,CF交于一点G,S△BGD=16,S△AGE=6,则△ABC的面积是60.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.
(1)此变化过程中,时间是自变量,路程因变量;
(2)甲的速度是$\frac{50}{3}$千米/时,乙的速度是$\frac{100}{3}$千米/时;
(3)6时表示乙追上甲;
(4)路程为150千米,甲行驶了9小时,乙行驶了4小时;
(5)9时甲在乙的后面(前面、后面、相同位置);
(6)分别写出甲乙两人行驶的路程s(千米)与行驶的时间t(小时)的函数关系式(不要求写出自变量的取值范围)
S=$\frac{50}{3}$t
S=$\frac{150}{4}$t-$\frac{450}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知代数式(x-2)2-2(x+3)(x-3)-23.
(1)化简该代数式;
(2)有人认为不论x取何值该代数式的值均为负数,你认为不正确(填“正确”或“不正确”),若不正确请举出一个反例加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,将△ABC沿BC方向平移l个单位,得到△DEF,若四边形ABFD的周长是12,则△ABC的周长为10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.如对于任意正实数a、x,可作变形:x+$\frac{a}{x}$=($\sqrt{x}$-$\frac{\sqrt{a}}{\sqrt{x}}$)2+2$\sqrt{a}$,因为($\sqrt{x}$-$\frac{\sqrt{a}}{\sqrt{x}}$)2≥0,所以x+$\frac{a}{x}$≥2$\sqrt{a}$(当x=$\sqrt{a}$时取等号).
记函数y=x+$\frac{a}{x}$(a>0,x>0),由上述结论可知:当x=$\sqrt{a}$时,该函数有最小值为2$\sqrt{a}$.
直接应用:已知函数y1=x(x>0)与函数y2=$\frac{9}{x}$(x>0),则当x=3 时,y1+y2取得最小值为6.
变形应用:已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>-1),求$\frac{{y}_{2}}{{y}_{1}}$的最小值,并指出取得该最小值时相应的x的值.
实际应用:汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油($\frac{1}{18}$+$\frac{450}{{x}^{2}}$)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.
①求y关于x的函数关系式(写出自变量x的取值范围);
②求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,△ABC是⊙O的内接三角形,AC经过点O,AB=3,BC=4,D是劣弧BC上一点,连接CD并延长到点E,使得5CD=CE,连接AE、BE,过点E作BC的垂线,交CB的延长线于点F.
(1)求⊙O的面积;
(2)若D是劣弧BC的中点,AE=10
     ①求证:AE为⊙O的切线;
     ②求BE的长度.

查看答案和解析>>

同步练习册答案