分析 (1)在函数解析式中分别令y=0和x=0,解相应方程,可求得A、B的坐标;
(2)过C作CD⊥AB于点D,由勾股定理可求得AB,由角平分线的性质可得CO=CD,则可用CO表示出△AOB面积,可求得CO,则可求得△ABC的面积;
(3)可设P(x,y),则可分别表示出AP2、BP2,分∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,分别可得到关于x、y的方程组,可求得P点坐标.
解答 解:
(1)在y=-$\frac{4}{3}$x+8中,令y=0可得0=-$\frac{4}{3}$x+8,解得x=6,令x=0,解得y=8,
∴A(6,0),B(0,8);
(2)如图,过点C作CD⊥AB于点D,
∵AC平分∠OAB,
∴CD=OC,
由(1)可知OA=6,OB=8,
∴AB=10,
∵S△AOB=S△AOC+S△ABC,
∴$\frac{1}{2}$×6×8=$\frac{1}{2}$×6OC+$\frac{1}{2}$×10OC,解得OC=3,
∴S△ABC=$\frac{1}{2}$×10×3=15;
(3)设P(x,y),则AP2=(x-6)2+y2,BP2=x2+(y-8)2,且AB2=100,
∵△PAB为等腰直角三角形,
∴有∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,
①当∠PAB=90°时,则有PA2=AB2且PA2+AB2=BP2,
即$\left\{\begin{array}{l}{(x-6)^{2}+{y}^{2}=100}\\{(x-6)^{2}+{y}^{2}+100={x}^{2}+(y-8)^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=13}\\{y=6}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=-6}\end{array}\right.$,
此时P点坐标为(13,6)或(-2,-6);
②∠PBA=90°时,则有PB2=AB2且PB2+AB2=PA2,
即$\left\{\begin{array}{l}{{x}^{2}+(y-8)^{2}=100}\\{{x}^{2}+(y-8)^{2}+100=(x-6)^{2}+{y}^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=8}\\{y=14}\end{array}\right.$或$\left\{\begin{array}{l}{x=-8}\\{y=2}\end{array}\right.$,
此时P点坐标为(8,14)或(-8,2);
③∠APB=90°时,则有PA2=PB2且PA2+PB2=AB2,
即$\left\{\begin{array}{l}{(x-6)^{2}+{y}^{2}={x}^{2}+(y-8)^{2}}\\{(x-6)^{2}+{y}^{2}+{x}^{2}+(y-8)^{2}=100}\end{array}\right.$解得$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$或$\left\{\begin{array}{l}{x=7}\\{y=7}\end{array}\right.$,
此时P点坐标为(-1,-1)或(7,7);
综上可知使△PAB为等腰直角三角形的P点坐标为此时P点坐标为(13,6)或(-2,-6)或(8,14)或(-8,2)或(-1,-1)或(7,7).
点评 本题为一次函数的综合应用,涉及函数图象与坐标轴的交点、勾股定理、三角形的面积、角平分线的性质、等腰直角三角形的性质、分类讨论思想及方程思想等知识.在(1)不注意函数图象与坐标轴的交点的求法,在(2)中利用角平分线的性质和等积法求得OC的长是解题的关键,在(3)中用P点坐标分别表示出PA、PB的长,由等腰直角三角形的性质得到关于P点坐标的方程组是解题的关键.本题考查知识点较多,综合性较强,计算较大,难度较大.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (x+2y)(x-2y)=x2-4y2 | B. | x2y-xy2-1=xy(x-y)-1 | ||
C. | a2-4ab+4b2=(a-2b)2 | D. | 2a2-2a=2a2(1-$\frac{1}{a}$) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 单项式3ab的次数是1 | |
B. | 单项式$\frac{2ab}{3}$的系数是2 | |
C. | 3a-2a2b+2ab是三次三项式 | |
D. | -4a2b,3ab,5是多项式-4a2b+3ab-5的项 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com