精英家教网 > 初中数学 > 题目详情
如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,求DM:MC的值.
分析:由旋转可以得出△BEC≌△DFC,∠ECF=90°,就有EC=CF=3,DD=BC=5,∠BEC=∠DFC=90°,由勾股定理就可以求出CD的值,进而得出CE∥DF,就有△CEM∽△DFM,就可以求出CM,DM的值,从而得出结论.
解答:解:∵BEC绕C点旋转90°使BC与DC重合,得到△DCF,
∴△BEC≌△DFC,∠ECF=90°,
∴EC=CF=3,DF=BC=5,∠BEC=∠DFC=90°.
在Rt△DFC中,由勾股定理,得
DF=4.
∵∠DFC=90°,
∴∠DFC+∠ECF=180°,
∴EC∥DF,
∴△CEM∽△DFM,
EC
DF
=
CM
DM

3
4
=
CM
DM

即DM:MC=
4
3
点评:本题考查了旋转的性质的运用,全等三角形的性质的运用,相似三角形的判定及性质的运用,勾股定理的运用,平行线的判定及性质的运用,解答时证明三角形相似是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.
(1)求证:AD=BE;
(2)试判断△ABF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形精英家教网ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求证:BC=CD;
(2)在边AB上找点E,连接CE,将△BCE绕点C顺时针方向旋转90°得到△DCF.连接EF,如果EF∥BC,试画出符合条件的大致图形,并求出AE:EB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•深圳二模)如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)若EF=6,求梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O切DC边于E点,AD=3cm,BC=5cm.求⊙O的面积.

查看答案和解析>>

同步练习册答案