精英家教网 > 初中数学 > 题目详情

【题目】一次函数y=ax+b(a≠0)与二次函数y=ax2+2x+b(a≠0)在同一直角坐标系中的图象可能是( )
A.
B.
C.
D.

【答案】D
【解析】解:A、由抛物线可知,a>0,得b>0,由直线可知,a<0,b>0,故本选项错误;
B、由抛物线可知,a<0,b>0,由直线可知,a>0,b<0,故本选项错误;
C、由抛物线可知,a<0,b>0,由直线可知,a<0,b<0,故本选项错误;
D、由抛物线可知,a>0,b>0,由直线可知,a>0,b>0,且交y轴同一点,故本选项正确.
所以答案是:D.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形中,,点在边上,且;将沿对折至,延长交边于点,连结,下列结论中,正确的个数为(

;②;③;④

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC②∠ABC=90°③AC=BD④AC⊥BD中选两个作为补充条件,使ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )

A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 中, ,AB=BC,A,B的坐标分别为 ,将 绕点P旋转 后得到 ,其中点B的对应点 的坐标为

(1)求出点C的坐标;
(2)求点P的坐标,并求出点C的对应点 的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠A∶∠ABC∶∠ACB=3∶4∶5,BD,CE分别是边AC,AB上的高,BD,CE相交于H,求∠BHC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),( ,y2)是抛物线上两点,则y1>y2 . 其中说法正确的是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,若点从点出发,以每秒个单位长度的速度沿折线运动(回到点停止运动),设运动时间为秒.

1)当点上时,且满足时,求出此时的值;

2)当点上时,求出为何值时,为以为腰的等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进一批日用品,若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数 (件)与价格 (元/件)之间满足一次函数关系.
(1)试求:y与x之间的函数关系式;
(2)这批日用品购进时进价为4元,则当销售价格定为多少时,才能使每月的润最大?每月的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索:小明和小亮在研究一个数学问题:已知ABCD,AB和CD都不经过点P,探索P与A,C的数量关系.

发现:在图1中,小明和小亮都发现:APC=A+C;

小明是这样证明的:过点P作PQAB

∴∠APQ=A(

PQAB,ABCD.

PQCD(

∴∠CPQ=C

∴∠APQ+CPQ=A+C

APC=A+C

小亮是这样证明的:过点作PQABCD.

∴∠APQ=A,CPQ=C

∴∠APQ+CPQ=A+C

APC=A+C

请在上面证明过程的过程的横线上,填写依据;两人的证明过程中,完全正确的是

应用:

在图2中,若A=120°C=140°,则P的度数为

在图3中,若A=30°C=70°,则P的度数为

拓展:

在图4中,探索P与A,C的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案