精英家教网 > 初中数学 > 题目详情

“勾股弦”后人概括为“勾3、股4、弦5.”
(1)观察:3、4、5;5、12、13;7、24、25;…,发现这几组勾股数的勾都是奇数,且从3起就没有间断过,计算数学公式(9-1),数学公式(9+1);数学公式(25-1),数学公式(25+1);并根据你发现的规律,分别写出能表示7、24、25这一组数的股与弦的算式.
(2)根据(1)的规律,若用n(n为奇数,且n≥3)来表示所有这些勾股数的勾,请直接用n的代数式来表示它们的股和弦.
(3)继续观察:4、3、5;6、8、10;8、15、17;…,发现各组的第一个数都是偶数,且从4起也没有间断过.利用类似上述探索的方法,若用m(m为偶数,且m≥4)来表示所有这些勾股数的勾,请分别用m的代数式来表示它们的股和弦.

解:(1)∵(9-1)=4,(9+1)=5;(25-1)=12,(25+1)=13;
∴表示7、24、25这一组数的股与弦的算式股:(49-1)=(72-1),弦:(49+1)=(72+1);
(2)用n(n为奇数,且n≥3)的代数式来表示,股:(n2-1),弦:(n2+1);
(3)用m(m为偶数,且m≥4)的代数式来表示,股:m2-1,弦:m2+1.
分析:(1)通过计算,发现规律为:股是勾的平方减1的一半,弦是勾的平方加1的一半,从而写出结果;
(2)由(1)可知,用n来表示所有这些勾股数的勾,则其股是n的平方减1的一半,弦是n的平方加1的一半;
(3)根据以上探索规律,偶数开头的各组数字,其股是勾的平方的四分之一减1,其弦是勾的平方的四分之一加1.
点评:本题是研究勾股数,考查学生观察、分析、类比和猜想解决问题的能力.属于探索性题目,有利于培养同学们的发散思维能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是三,股是四,那么弦就等于五.后人概括为“勾三、股四、弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,小明发现这些勾股数的勾都是奇数,且从3起就没有间断过,
当勾=3时,股4=
1
2
(9-1),弦5=
1
2
(9+1);
当勾=5时,股12=
1
2
(25-1),弦13=
1
2
(25+1);
------
请你根据小明发现的规律用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾
 
、股
 
、弦
 
,并猜想他们之间的相等关系(写二种)并对其中一种猜想加以证明;
(2)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.请你直接用m(m为偶数且m≥4)的代数式来表示他们的股和弦.

查看答案和解析>>

科目:初中数学 来源: 题型:

据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算
1
2
(9-1)、
1
2
(9+1)与
1
2
(25-1)、
1
2
(25+1),并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;
(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的股和弦.

查看答案和解析>>

科目:初中数学 来源: 题型:

“勾股弦”后人概括为“勾3、股4、弦5.”
(1)观察:3、4、5;5、12、13;7、24、25;…,发现这几组勾股数的勾都是奇数,且从3起就没有间断过,计算
1
2
(9-1),
1
2
(9+1);
1
2
(25-1),
1
2
(25+1);并根据你发现的规律,分别写出能表示7、24、25这一组数的股与弦的算式.
(2)根据(1)的规律,若用n(n为奇数,且n≥3)来表示所有这些勾股数的勾,请直接用n的代数式来表示它们的股和弦.
(3)继续观察:4、3、5;6、8、10;8、15、17;…,发现各组的第一个数都是偶数,且从4起也没有间断过.利用类似上述探索的方法,若用m(m为偶数,且m≥4)来表示所有这些勾股数的勾,请分别用m的代数式来表示它们的股和弦.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

“勾股弦”后人概括为“勾3、股4、弦5.”
(1)观察:3、4、5;5、12、13;7、24、25;…,发现这几组勾股数的勾都是奇数,且从3起就没有间断过,计算
1
2
(9-1),
1
2
(9+1);
1
2
(25-1),
1
2
(25+1);并根据你发现的规律,分别写出能表示7、24、25这一组数的股与弦的算式.
(2)根据(1)的规律,若用n(n为奇数,且n≥3)来表示所有这些勾股数的勾,请直接用n的代数式来表示它们的股和弦.
(3)继续观察:4、3、5;6、8、10;8、15、17;…,发现各组的第一个数都是偶数,且从4起也没有间断过.利用类似上述探索的方法,若用m(m为偶数,且m≥4)来表示所有这些勾股数的勾,请分别用m的代数式来表示它们的股和弦.

查看答案和解析>>

同步练习册答案