精英家教网 > 初中数学 > 题目详情
如图,AB、CD是⊙O的直径,弦CE∥AB,弧CE的度数为40°,求∠AOC的度数.

【答案】分析:连接OE,由弧CE的度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE=(180°-40°)÷2=70°,而弦CE∥AB,即可得到∠AOC=∠OCE=70°.
解答:解:连接OE,如图,
∵弧CE的度数为40°,
∴∠COE=40°,
∵OC=OE,
∴∠OCE=∠OEC,
∴∠OCE=(180°-40°)÷2=70°,
∵弦CE∥AB,
∴∠AOC=∠OCE=70°.
点评:本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等,等腰三角形的性质和平行的性质以及三角形的内角和定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为(  )
A、
1
4
B、
1
5
C、
3
8
D、
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•盘锦)如图,AB,CD是⊙O的直径,点E在AB延长线上,FE⊥AB,BE=EF=2,FE的延长线交CD延长线于点G,DG=GE=3,连接FD.
(1)求⊙O的半径;
(2)求证:DF是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB,CD是⊙O的两条弦,且AB=CD,点M是
AC
的中点,求证:MB=MD.

查看答案和解析>>

同步练习册答案