分析 (1)由等边三角形的性质易得AB=BC=AC,∠A=∠B=∠C=60°,由已知易得BD=CE=AF,AD=BE=CF,可得△BDE≌△CEF≌△AFD,由全等三角形的性质可得DE=FD=EF,证得结论;
(2)首先由∠DEC=150°,易得∠FEC=90°,可得△ADF、△BED、△CFE均为直角三角形,可得∠CFE=∠ADF=∠BDE=30°,由直角三角形的性质可得CF=AD=BE=2BD=4,可得AB,易得结果.
解答 (1)证明:∵△ABC是等边三角形,
∴AB=BC=AC,∠A=∠B=∠C=60°,
∵BD=CE,BE=CF,
∴BD=CE,BE=CF,
∴BD=CE=AF,AD=BE=CF,
在△BDE与△CEF中,
$\left\{\begin{array}{l}{BD=CE}\\{∠B=∠C}\\{BE=CF}\end{array}\right.$,
∴△BDE≌△CEF(SAS),
∴DE=EF,
同理可得△BDE≌△AFD,
∴DE=FD,
∴DE=FD=EF,
∴△DEF为等边三角形;
(2)解:∵∠DEC=150°,∠DEF=60°,
∴∠FEC=90°,
∴△ADF、△BED、△CFE均为直角三角形,且∠CFE=∠ADF=∠BDE=30°,
∵BD=CE=2,
∴CF=AD=BE=2BD=4,
∴AB=BC=AC=6,
∴等边△ABC的周长为:6×3=18.
点评 本题主要考查了等边三角形的性质及判定和全等三角形的性质及判定,综合利用各定理是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com