精英家教网 > 初中数学 > 题目详情

【题目】
(1)如图1,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:∠A=∠D.
(2)如图2,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上. ①求sinB的值;
②画出△ABC关于直线l对称的△A1B1C1(A与A1 , B与B1 , C与C1相对应),连接AA1 , BB1 , 并计算梯形AA1B1B的面积.

【答案】
(1)证明:BE=CF,

∴BE+EF=CF+EF.

即BF=CE.

在△ABF和△DCE中,

∴△ABF≌△DCE(SAS).

∴∠A=∠D


(2)解:①∵AC=3,BC=4,

∴AB=5.

sinB=

②如图所示:

由轴对称性质得AA1=2,BB1=8,高是4,

= =20


【解析】(1)根据全等三角形的判定与性质,可得答案;(2)根据正弦函数的定义,可得答案;根据轴对称性质,可作轴对称图形,根据梯形的面积公式,可得答案.
【考点精析】根据题目的已知条件,利用锐角三角函数的定义的相关知识可以得到问题的答案,需要掌握锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索

1=_______

2同理表示数轴上有理数x所对应的点到-5和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得=7,这样的整数是_______

3由以上探索猜想对于任何有理数x,是否有最小值?如果有,写出最小值;如果没有,说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分类讨论是一种重要的数学方法,如在化简|a|时,可以这样分类:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=﹣a.用这种方法解决下列问题:

(1)a=5时,求的值.

(2)a=﹣2时,求的值.

(3)若有理数a不等于零,求的值.

(4)若有理数a、b均不等于零,试求+的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近两年,国际市场黄金价格涨幅较大,中国交通银行推出沃德金的理财产品,即以黄金为投资产品,投资者从黄金价格的上涨中赚取利润.上周五黄金的收盘价为285/克,下表是本周星期一至星期五黄金价格的变化情况.(注:星期一至星期五开市,星期六.星期日休市)

星期

收盘价的变化(与前一天收盘价比较)

+7

+5

+8

问:(1)本周星期三黄金的收盘价是多少?

(2)本周黄金收盘时的最高价.最低价分别是多少?

(3)上周,小王以周五的收盘价285/克买入黄金1000克,已知买入与卖出时均需支付成交金额的千分之五的交易费,卖出黄金时需支付成交金额的千分之三的印花税.本周,小王以周五的收盘价全部卖出黄金1000克,他的收益情况如何?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,EDC边上一点,且DE=1,AE=EF,∠AEF=90°,则FC= ( )

A. B. C. D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3 ,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.
(1)求BC的长;
(2)求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点P是线段AD上一动点,OBD的中点,PO的延长线交BC于点Q。

(1)求证:OP=OQ;

(2)若AD=8cm,AB=6cm,P从点A出发,以1cm/秒的速度向点D运动(不与点D重合),设点P运动时间为t秒,请用t表示PD的长;并求当t为何值时,四边形PBQD是菱形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B两点,若反比例函数y= (x>0)的图象与△ABC有公共点,则k的取值范围是( )

A.2≤k≤9
B.2≤k≤8
C.2≤k≤5
D.5≤k≤8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,则∠A、∠C、∠E、∠F满足的数量关系是(  )

A. A=∠C+∠E+∠F B. A+∠E﹣∠C﹣∠F=180°

C. A﹣∠E+∠C+∠F=90° D. A+∠E+∠C+∠F=360°

查看答案和解析>>

同步练习册答案