如图,在平面直角坐标系中,正方形ABCO的点A、C分别在x轴、y轴上,点B坐标为(6,6)连接AC.抛物线y=x
2+bx+c经过B、C两点.
(1)求抛物线的解析式.
(2)若动点E从原点出发,以每秒一个单位的速度,沿折线O-C-B-A做匀速运动,同时点F从原点出发,以相同的速度向x正半轴方向做匀速运动,过点E作ED⊥x轴于点D,当点E停止运动时,点F也停止运动.设△EFD的面积为S,运动时间为x(0<x<18),试写出S与x的函数关系式,并求出S的最大值.
(3)P是直线AC上的点,在抛物线上是否存在点Q,使以0、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.