精英家教网 > 初中数学 > 题目详情
(本题10分)如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.

(1)直接写出点A、B的坐标:A(         )、B(          );
(2)若抛物线y=-x2+bx+c经过点A、B,请求出这条抛物线的解析式;
(3)当≤x≤7,在抛物线上存在点P,使△ABP的面积最大,那么△ABP最大面积是                                 .(请直接写出结论,不需要写过程)
(1).   A(6,0),B(0,-8)
(2) 
(3) 面积最大为7.

试题分析:(1)由OD=10,OB=8,矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合,可得OA2=AB2-OB2=102-82=36,∴OA=6。∴A(6,0),B(0,-8)。
(2)∵抛物线y=-x2+b x+c经过点A、B,
,解得
∴这条抛物线的解析式是
(3)根据二次函数的性质,分≤x<4,4≤x<6和6≤x≤7三个区间分别求出最大值,比较即可。
点评:弄懂旋转的性质:旋转点到中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线经过点().
(1)求的值;
(2)若此抛物线的顶点为(),用含的式子分别表示,并求之间的函数关系式;
(3)若一次函数,且对于任意的实数,都有,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某汽车在刹车后行驶的距离s(单位:m)与时间t(单位:s)之间的关系得部分数据如下表:
时间t(s)
0
0.2
0.4
0.6
0.8
1.0
1.2

行驶距离s(m)
0
2.8
5.2
7.2
8.8
10
10.8

假设这种变化规律一直延续到汽车停止.
(1)根据这些数据在给出的坐标系中画出相应的点;

(2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式;
(3)刹车后汽车行驶了多长距离才停止?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是 (    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:直线y=-2x-2与x轴交于点A,与y轴交于点C,抛物线经过点A、C、E,且点E(6,7)

(1)求抛物线的解析式.
(2)在直线AE的下方的抛物线取一点M使得构成的三角形AME的面积最大,请求出M点的坐标及△AME的最大面积.
(3)若抛物线与x轴另一交点为B点,点P在x轴上,点D(1,-3),以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题12分)如图,二次函数的图象与x轴交于两个不同的点A(-2,0)、B(4,0),与y轴交于点C(0,3),连结BC、AC,该二次函数图象的对称轴与x轴相交于点D.
(1)求这个二次函数的解析式、点D的坐标及直线BC的函数解析式;
(2)点Q在线段BC上,使得以点Q、D、B为顶点的三角形与△相似,求出点Q的坐标;
(3)在(2)的条件下,若存在点Q,请任选一个Q点求出△外接圆圆心的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数的图象与x轴有且只有一个交点,写出a所有可能的值____.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,当y<0时,自变量 x的取值范围为  (    )
A.-1<x<3 B.x<-1C.x>3D.x<-1或x>3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若将抛物线y=先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是
A.B.C.D.

查看答案和解析>>

同步练习册答案