精英家教网 > 初中数学 > 题目详情
如图,已知反比例函数y=(k<0)的图象经过点A(-,m),过点A作AB⊥x轴于点B,且△AOB的面积为
(1)求k和m的值;
(2)若一次函数y=ax+1的图象经过点A,并且与x轴相交于点C,求∠ACO的度数和|AO|:|AC|的值.

【答案】分析:(1)根据△AOB的面积为,得到反比例函数的解析式,进而可以求出m的值.
(2)把A(-,2)代入y=ax+1中,就可以求出a的值,得到函数的解析式,因而求出C点的坐标,在Rt△ABC中就可以求出tan∠ACO的值,得到AC的值,在Rt△ABO中,根据勾股定理就可以求出OA的值.
解答:解:(1)∵k<0,
∴点A(-,m)在第二象限内.
∴m>0,|OB|=|-|=,|AB|=m.
∵S△AOB=•|OB|•|AB|=•m=
∴m=2.
∴点A的坐标为A(-,2).(2分)
把A(-,2)的坐标代入y=中,
得2=
∴k=-2.(2分)

(2)把A(-,2)代入y=ax+1中,得2=-a+1,
∴a=
∴y=-.(1分)
令y=0,得-x+1=0,
∴x=
∴点C的坐标为C(,0).
∵AB⊥x轴于点B,
∴△ABC为直角三角形.
在Rt△ABC中,|AB|=2,|BC|=2
∴tan∠ACO=
∴∠ACO=30°.
∴|AC|=2|AB|=4.(2分)
在Rt△ABO中,由勾股定理,
得|AO|=
∴|AO|:|AC|=:4.(1分)
点评:本题考查函数图象交点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
m
x
图象与一次函数y=kx+b的图象均经过A(-1,4)和B(a,
4
5
)两点,
(1)求B点的坐标及两个函数的解析式;
(2)若一次函数y=kx+b的图象与x轴交于点C,求C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且S△AOB=3.若一次函数y=ax+1的图象经过点A,并且与x轴相交于点C,求AO:AC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.
(1)求这两个函数的解析式;
(2)求△MON的面积;
(3)请判断点P(4,1)是否在这个反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y1=
kx
和一次函数y2=ax+b的图象相交于点A和点D,且点A的横坐标为1,点D的纵坐标为-1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数y2=ax+b的图象与x轴相交于点C,求∠ACO的度数.
(3)结合图象直接写出:当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
k
x
的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长;
(3)在双曲线上是否存在点P,使得△MBP的面积为8?若存在请求P点坐标;若不存在请说明理由.

查看答案和解析>>

同步练习册答案