精英家教网 > 初中数学 > 题目详情

已知(a2+b22+(a2+b2)-6=0,则a2+b2的值为


  1. A.
    3或-2
  2. B.
    -3或2
  3. C.
    3
  4. D.
    2
D
分析:设y=a2+b2,将已知方程整理为关于y的一元二次方程,利用因式分解法求出方程的解得到y的值,即可确定出a2+b2的值.
解答:设y=a2+b2,原方程化为y2+y-6=0,
分解因式得:(y-2)(y+3)=0,
可得y-2=0或y+3=0,
解得:y=2或y=-3,
∵a2+b2≥0,
∴a2+b2的值为2.
故选D
点评:此题考查了换元法解一元二次方程,以及解一元二次方程-因式分解法,换元思想是数学中重要的思想方法,做题时注意灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、已知:a2+b2+2a-4b+5=0,先化简,再求(a-2b)2-(a+2b)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知y1=a2+b2,y2=y1-3,且y1•y2=4,则y1的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知(a2+b22+(a2+b2)-6=0,则a2+b2的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:a2-b2=(a-b)(a+b);a3-b3=(a-b)(a2+ab+b2);a4-b4=(a-b)(a3+a2b+ab2+b3);a5-b5=(a-b)(a4+a3b+a2b2+ab3+b4)按此规律,则:
(1)a6-b6=(a-b)
(a-b)(a5+a4b+a3b2+a2b3+ab4+b5
(a-b)(a5+a4b+a3b2+a2b3+ab4+b5

(2)若a-
1
a
=3
,请你根据上述规律求出代数式a3-
1
a3
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0.求:
(1)多项式C.
(2)若a=1,b=-1,c=3,求A+B的值.

查看答案和解析>>

同步练习册答案