Èçͼ£¬ÒÑÖª¶þ´Îº¯ÊýͼÏóµÄ¶¥µã×ø±êΪC(1,0)£¬Ö±ÏßÓë¸Ã¶þ´Îº¯ÊýµÄͼÏó½»ÓÚA¡¢BÁ½µã£¬ÆäÖÐAµãµÄ×ø±êΪ(3,4)£¬BµãÔÚÖáÉÏ.£¨1£©ÇóµÄÖµ¼°Õâ¸ö¶þ´Îº¯ÊýµÄ¹Øϵʽ£»£¨2£©PΪÏ߶ÎABÉϵÄÒ»¸ö¶¯µã£¨µãPÓëA¡¢B²»Öغϣ©£¬¹ýP×÷ÖáµÄ´¹ÏßÓëÕâ¸ö¶þ´Îº¯ÊýµÄͼÏó½»ÓÚµãEµã£¬ÉèÏ߶ÎPEµÄ³¤Îª£¬µãPµÄºá×ø±êΪ£¬ÇóÓëÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Ð´³ö×Ô±äÁ¿µÄÈ¡Öµ·¶Î§£»£¨3£©DΪֱÏßABÓëÕâ¸ö¶þ´Îº¯ÊýͼÏó¶Ô³ÆÖáµÄ½»µã£¬ÔÚÏ߶ÎABÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃËıßÐÎDCEPÊÇƽÐÐËÄÐΣ¿Èô´æÔÚ£¬ÇëÇó³ö´ËʱPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.

 (1) ¡ß µãA(3,4)ÔÚÖ±Ïßy=x+mÉÏ£¬¡à 4=3+m.  ¡à m=1.  

        ÉèËùÇó¶þ´Îº¯ÊýµÄ¹ØϵʽΪy=a(x-1)2.             ¡ß µãA(3,4)ÔÚ¶þ´Îº¯Êýy=a(x-1)2µÄͼÏóÉÏ£¬        ¡à 4=a(3-1)2,        ¡à a=1.                                

¡à ËùÇó¶þ´Îº¯ÊýµÄ¹ØϵʽΪy=(x-1)2.    ¼´y=x2-2x+1.                         

(2) ÉèP¡¢EÁ½µãµÄ×Ý×ø±ê·Ö±ðΪyPºÍyE .¡à PE=h=yP-yE =(x+1)-(x2-2x+1) =-x2+3x.                           

   ¼´h=-x2+3x (0£¼x£¼3). 

(3) ´æÔÚ.ҪʹËıßÐÎDCEPÊÇƽÐÐËıßÐΣ¬±ØÐèÓÐPE=DC. ¡ß µãDÔÚÖ±Ïßy=x+1ÉÏ,

¡à µãDµÄ×ø±êΪ(1,2),¡à -x2+3x=2 .¼´x2-3x+2=0 .           

½âÖ®£¬µÃ  x1=2£¬x2=1 (²»ºÏÌâÒ⣬ÉáÈ¥)   

¡à µ±PµãµÄ×ø±êΪ(2,3)ʱ£¬ËıßÐÎDCEPÊÇƽÐÐËıßÐÎ.

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖª¶þ´Îº¯ÊýͼÏóµÄ¶¥µã×ø±êΪC£¨1£¬0£©£¬Ö±Ïßy=x+mÓë¸Ã¶þ´Îº¯ÊýµÄͼÏó½»ÓÚA¡¢BÁ½µã£¬ÆäÖÐAµãµÄ×ø±êΪ£¨3£¬4£©£¬BµãÔÚÖáyÉÏ£®
£¨1£©ÇómµÄÖµ¼°Õâ¸ö¶þ´Îº¯ÊýµÄ¹Øϵʽ£»
£¨2£©PΪÏ߶ÎABÉϵÄÒ»¸ö¶¯µã£¨µãPÓëA¡¢B²»Öغϣ©£¬¹ýP×÷xÖáµÄ´¹ÏßÓëÕâ¸ö¶þ´Îº¯ÊýµÄͼÏó½»ÓÚµãE£¬ÉèÏ߶ÎPEµÄ³¤Îªh£¬µãPµÄºá×ø±êΪx£¬ÇóhÓëxÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Ð´³ö×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£»
£¨3£©DΪֱÏßABÓëÕâ¸ö¶þ´Îº¯ÊýͼÏó¶Ô³ÆÖáµÄ½»µã£¬ÔÚÏ߶ÎABÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃËıßÐÎDCEPÊÇƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³ö´ËʱPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¸ß´¾ÏØһģ£©Èçͼ£¬ÒÑÖª¶þ´Îº¯Êýy=-
1
2
x2+mx+3µÄͼÏó¾­¹ýµãA£¨-1£¬
9
2
£©£®
£¨1£©Çó¸Ã¶þ´Îº¯ÊýµÄ±í´ïʽ£¬²¢Ð´³ö¸Ãº¯ÊýͼÏóµÄ¶¥µã×ø±ê£»
£¨2£©µãP£¨2a£¬a£©£¨ÆäÖÐa£¾0£©£¬ÓëµãQ¾ùÔڸú¯ÊýµÄͼÏóÉÏ£¬ÇÒÕâÁ½µã¹ØÓÚͼÏóµÄ¶Ô³ÆÖá¶Ô³Æ£¬ÇóaµÄÖµ¼°µãQµ½yÖáµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•½­ÄþÇø¶þÄ££©Èçͼ£¬ÒÑÖª¶þ´Îº¯Êýy=ax2+bx+3µÄͼÏó¹ýµãA£¨-1£¬0£©£¬¶Ô³ÆÖáΪ¹ýµã£¨1£¬0£©ÇÒÓëyÖáƽÐеÄÖ±Ïߣ®
£¨1£©Çó¸Ã¶þ´Îº¯ÊýµÄ¹Øϵʽ£»
£¨2£©½áºÏͼÏ󣬽â´ðÏÂÁÐÎÊÌ⣺
¢Ùµ±xȡʲôֵʱ£¬¸Ãº¯ÊýµÄͼÏóÔÚxÖáÉÏ·½£¿
¢Úµ±-1£¼x£¼2ʱ£¬Çóº¯ÊýyµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖª¶þ´Îº¯ÊýͼÏóµÄ¶¥µã×ø±êΪM£¨2£¬0£©£¬Ö±Ïßy=x+2Óë¸Ã¶þ´Îº¯ÊýµÄͼÏó½»ÓÚA¡¢BÁ½µã£¬ÆäÖеãAÔÚyÖáÉÏ£¬PΪÏ߶ÎABÉÏÒ»¶¯µã£¨³ýA£¬BÁ½¶ËµãÍ⣩£¬¹ýP×÷xÖáµÄ´¹ÏßÓë¶þ´Îº¯ÊýµÄͼÏó½»ÓÚµãQÉèÏ߶ÎPQµÄ³¤Îªl£¬µãPµÄºá×ø±êΪx£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÇólÓëxÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Çó³ölµÄÈ¡Öµ·¶Î§£»
£¨3£©Ï߶ÎABÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹ËıßÐÎPQMAΪÌÝÐΣ¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖª¶þ´Îº¯Êýy=£¨x-1£©2µÄͼÏóµÄ¶¥µãΪCµã£¬Í¼ÏóÓëÖ±Ïßy=x+mµÄͼÏó½»ÓÚA¡¢BÁ½µã£¬ÆäÖÐAµãµÄ×ø±êΪ£¨3£¬4£©£¬BµãÔÚyÖáÉÏ£®
£¨1£©ÇómµÄÖµ£»
£¨2£©µãPΪÏ߶ÎABÉϵÄÒ»¸ö¶¯µã£¨µãPÓëA¡¢B²»Öغϣ©£¬¹ýµãP×÷xÖáµÄ´¹ÏßÓëÕâ¸ö¶þ´Îº¯ÊýµÄͼÏó½»ÓÚµãE£¬ÉèÏ߶ÎPEµÄ³¤Îªh£¬µãPµÄºá×ø±êΪx£¬ÇóhÓëxÖ®¼äµÄº¯Êý½âÎöʽ£¬²¢Ð´³ö×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£»
£¨3£©DΪֱÏßABÓëÕâ¸ö¶þ´Îº¯ÊýͼÏó¶Ô³ÆÖáµÄ½»µã£¬ÔÚÏ߶ÎABÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃËıßÐÎDCEPÊÇƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³ö´ËʱPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸