精英家教网 > 初中数学 > 题目详情
如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点.若两圆的半径分别为6cm和10cm,则AB的长为
16
16
 cm.
分析:连接OC,OB,由大圆的弦AB为小圆的切线,可得出OC垂直于AB,由垂径定理得到C为AB的中点,在直角三角形OBC中,由OB及OC的长,利用勾股定理求出BC的长,再根据AB=2BC可得出AB的长.
解答:解:连接OC,OB,

∵AB为圆O的切线,∴OC⊥AB,
∴C为AB的中点,即AC=BC=
1
2
AB,
又∵OB=10cm,OC=6cm,
在Rt△OBC中,根据勾股定理得:BC=
OB2-OC2
=8cm,
则AB=2BC=16cm.
故答案为:16
点评:此题考查了切线的性质,垂径定理,以及勾股定理,熟练掌握性质及定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(附加题)如图,以O为圆心的两个同心圆中,大圆的直径AD交小圆于M,N两点,大圆的弦AB切小精英家教网圆于点C,过点C作直线CE⊥AD,垂足为E,交大圆于F,H两点.
(1)试判断线段AC与BC的大小关系,并说明理由;
(2)求证:FC•CH=AE•AO;
(3)若FC,CH是方程x2-2
5
x+4=0的两根(CH>CF),求图中阴影部分图形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于P,如果AB=4cm,则图中阴影部分的面积为
 
cm2.(结果用π表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点,若两圆的半径分别为3cm和5cm,则AB的长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,切点为C,若AB=2
3
cm,OA=2cm,则图中阴影部分(扇形)的面积为
π
6
cm2
π
6
cm2

查看答案和解析>>

同步练习册答案