精英家教网 > 初中数学 > 题目详情
(2013•达州)选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如
①选取二次项和一次项配方:x2-4x+2=(x-2)2-2;
②选取二次项和常数项配方:x2-4x+2=(x-
2
)2+(2
2
-4)x
,或x2-4x+2=(x+
2
)2-(4+2
2
)x

③选取一次项和常数项配方:x2-4x+2=(
2
x-
2
)2-x2

根据上述材料,解决下面问题:
(1)写出x2-8x+4的两种不同形式的配方;
(2)已知x2+y2+xy-3y+3=0,求xy的值.
分析:(1)根据配方法的步骤根据二次项系数为1,常数项是一次项系数的一半的平方进行配方和二次项和常数项在一起进行配方即可.
(2)根据配方法的步骤把x2+y2+xy-3y+3=0变形为(x+
1
2
y)2+
3
4
(y-2)2=0,再根据x+
1
2
y=0,y-2=0,求出x,y的值,即可得出答案.
解答:解:(1)x2-8x+4
=x2-8x+16-16+4
=(x-4)2-12;
x2-8x+4
=(x-2)2+4x-8x
=(x-2)2-4x;

(2)x2+y2+xy-3y+3=0,
(x+
1
2
y)2+
3
4
(y-2)2=0,
x+
1
2
y=0,y-2=0,
x=-1,y=2,
则xy=(-1)2=1;
点评:本题考查了配方法的应用,根据配方法的步骤和完全平方公式:a2±2ab+b2=(a±b)2进行配方是解题的关键,是一道基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•达州)某中学在芦山地震捐款活动中,共捐款二十一万三千元.这一数据用科学记数法表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•达州)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有?ADCE中,DE最小的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•达州)二次函数y=ax2+bx+c的图象如图所示,反比例函数y=
b
x
与一次函数y=cx+a在同一平面直角坐标系中的大致图象是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•达州)如图,在平面直角坐标系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是⊙M的直径,其半圆交AB于点C,且AC=3.取BO的中点D,连接CD、MD和OC.
(1)求证:CD是⊙M的切线;
(2)二次函数的图象经过点D、M、A,其对称轴上有一动点P,连接PD、PM,求△PDM的周长最小时点P的坐标;
(3)在(2)的条件下,当△PDM的周长最小时,抛物线上是否存在点Q,使S△QAM=
16
S△PDM?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案