精英家教网 > 初中数学 > 题目详情
(2013•顺义区二模)已知:如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是⊙O外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线; 
(2)已知PA=2
3
,BC=2,求⊙O的半径.
分析:(1)连接OB,由OC=OB,PA=PB,利用等边对等角得到两对角相等,再利用弦切角等于夹弧所对的圆周角得到一对角相等,等量代换得到四个角都相等,由∠ABC为直角,得到∠OBC与∠OBA互余,等量代换得到∠OBA与∠PBA互余,即OB垂直于BP,即可确定出BP为圆的切线;
(2)设圆的半径为r,则AC=2r,在直角三角形ABC中,由AC与BC,利用勾股定理表示出AB,由(1)得到三角形PAB与三角形OCB相似,由相似得比例,将各自的值代入列出关于r的方程,求出方程的解得到r的值,即为圆的半径.
解答:(1)证明:连接OB,
∵OC=OB,AB=BP,
∴∠OCB=∠OBC,∠PAB=∠PBA,
∵AP为圆O的切线,
∴∠PAB=∠C,
∴∠PBA=∠OBC,
∵∠ABC=90°,
∴∠OBC+∠OBA=90°,
∴∠PBA+∠OBA=90°,即∠PBO=90°,
则BP为圆O的切线;

(2)解:设圆的半径为r,则AC=2r,
在Rt△ABC中,AC=2r,BC=2,
根据勾股定理得:AB=
AC2-BC2
=2
r2-1

∵∠PAB=∠C,∠PBA=∠OBC,
∴△PAB∽△OCB,
PA
OC
=
AB
BC
,即
2
3
r
=
2
r2-1
2

解得:r=2.
则圆的半径为2.
点评:此题考查了切线的判定与性质,相似三角形的判定与性质,等腰三角形的性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•顺义区二模)把代数式ab2-6ab+9a分解因式,下列结果中正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•顺义区二模)函数y=kx-k与y=
k
x
(k≠0)
在同一坐标系中的图象可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•顺义区二模)若|a-2|=2-a,则a的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•顺义区二模)函数y=
2-xx-3
中,自变量x的取值范围是
x≠3
x≠3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•顺义区二模)若把代数式x2+5x+7化为(x-m)2+k的形式,其中m,k为常数,则k-m=
13
4
13
4

查看答案和解析>>

同步练习册答案