如图1是由两块全等的含30°角的直角三角板摆放而成,斜边AC=10.
(1)若将△ADE沿直线AE翻折到如图2的位置,ED'与BC交于点F,求证:CF=EF;
(2)求EF的长;
(3)将图2中的△AD'E沿直线AE向右平移到图3的位置,使D'点落在BC上,求出平移的距离.
(1)证明:∵△ABC≌△ADE,
∴AC=AE,AB=AD,
根据翻折对称性,AD′=AD,
∴AD′=AB,
∴AC-AD′=AE-AB,
即CD′=BE,
在△CD′F与△EBF中,
∴△CD′F≌△EBF(AAS),
∴CF=EF(全等三角形对应边相等);
(2)解:∵∠C=30°,AC=10,
∴AB=AC=×10=5,
∴EB=10-AB=5,
在△EFB中,∠FEB=30°,
∴BF=EF,
根据勾股定理得EF2=BF2+EB2,
∴EF2=(EF)2+52,
解得EF=;
(3)解:根据平移,D′D″∥AB,
又∵AD′=AB=5,CD′=10-AD′=5,
∴D′D″是△ABC的中位线,
∵∠C=30°,AC=10,
∴D′D″=AB=×AC=××10=,
故平移距离.
科目:初中数学 来源: 题型:
如图,AB、AC分别与⊙O相切,切点分别为B、C,过点C作CD∥AB,交⊙O于点D,连接BC、BD.
(1)判断BC与BD的数量关系,并说明理由;
(2)若AB=9,BC=6,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,点E在DC上,∠ABE=45°,AE,BC的延长线相交于点F,若AE=10,则S⊿ADE+S⊿CEF的值是 。
查看答案和解析>>
科目:初中数学 来源: 题型:
对于实数定义一种运算为:,有下列命题:
①;
②方程的根为:
③不等式组的解集为
④在函数的图像与坐标轴交点组成的三角形面积为3,则此函数的顶点坐标是其中正确的( )
A.①②③④ B.①②③ C.①② D.①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
有四张卡片(形状、大小和质地都相同),正面分别写有字母和一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张,记录字母后放回,重新洗匀再从中随机抽取一张,记录字母.
(1)用画树状图或列表法表示两次抽取卡片可能出现的所有情况(卡片可用表示);
(2)分别求抽取的两张卡片上算式都正确的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图.那么关于该班45名同学一周参加体育锻炼时
|
A.众数是9 B.中位数是9
C.平均数是9 D.锻炼时间不低于9小时的有14人
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com