精英家教网 > 初中数学 > 题目详情
20.(1)问题
如图1,点A为线段BC外一动点,且BC=a,AB=b.
填空:当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为a+b(用含a,b的式子表示)
(2)应用
点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.
①请找出图中与BE相等的线段,并说明理由;
②直接写出线段BE长的最大值.
(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90,请直接写出线段AM长的最大值及此时点P的坐标.

分析 (1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;
(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;
(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2$\sqrt{2}$+3;过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论.

解答 解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,
∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,
故答案为:CB的延长线上,a+b;

(2)①CD=BE,
理由:∵△ABD与△ACE是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC,
即∠CAD=∠EAB,
在△CAD与△EAB中,
$\left\{\begin{array}{l}{AD=AB}\\{∠CAD=∠EAB}\\{AC=AE}\end{array}\right.$,
∴△CAD≌△EAB(SAS),
∴CD=BE;
②∵线段BE长的最大值=线段CD的最大值,
∴由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,
∴最大值为BD+BC=AB+BC=4;

(3)如图1,连接BM,
∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,
∴PN=PA=2,BN=AM,
∵A的坐标为(2,0),点B的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM长的最大值=线段BN长的最大值,
∴当N在线段BA的延长线时,线段BN取得最大值,
最大值=AB+AN,
∵AN=$\sqrt{2}$AP=2$\sqrt{2}$,
∴最大值为2$\sqrt{2}$+3;
如图2,过P作PE⊥x轴于E,
∵△APN是等腰直角三角形,
∴PE=AE=$\sqrt{2}$,
∴OE=BO-AB-AE=5-3-$\sqrt{2}$=2-$\sqrt{2}$,
∴P(2-$\sqrt{2}$,$\sqrt{2}$).

点评 本题属于三角形综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质以及旋转的性质的综合应用.注意等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.正确的作出辅助线构造全等三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.已知等腰三角形的一个角为50°,则其定角为50°或80°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列图形标志中,不是轴对称图形的(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.春天来了,小明骑自行车从家里出发到野外郊游,从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地,小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.
(1)直接写出小明开始骑车的0.5小时内所对应的函数解析式y=20x.
(2)小明从家出发多少小时后被妈妈追上?此时离家多远?
(3)若妈妈比小明早12分钟到达乙地,求从家到乙地的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.小聪与同桌小明在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,试确定线段AE与DB的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:

(1)取特殊情况,探索讨论:
当点E为AB的中点时,如图(2),确定线段AE与DB的大小关系,请你写出结论:AE=DB(填“>”,“<”或“=”),并说明理由.
(2)特例启发,解答题目:
解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图(3),过点E作EF∥BC,交AC于点F.(请你将剩余的解答过程完成)
(3)拓展结论,设计新题:
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若△ABC的边长为1,AE=2,则CD的长为3或1.(请你画出图形,并直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,⊙O 的半径为1,PA,PB是⊙O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,若∠APB=60°,则△PAB的周长为3$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:关于x的一元二次方程x2-6x-m=0有两个实数根.
(1)求m的取值范围;
(2)如果m取符合条件的最小整数,且一元二次方程x2-6x-m=0与x2+nx+1=0有一个相同的根,求常数n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图所示,直线AB、CD相交于点O,OM⊥AB.
(1)若∠1=∠2,判断ON与CD的位置关系,并说明理由;
(2)若∠1=$\frac{1}{4}$∠BOC,求∠MOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.将数578000用科学记数法表示为5.78×105

查看答案和解析>>

同步练习册答案